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Let X be the Baire space (or any other recursively presented Polish space), E a countable
∆1

1 equivalence relation on X and µ a Borel probability measure on X.
The aim of this note is to prove the following theorem.

Theorem 1 (Segal). If E is µ-hyperfinite, then there exists a ∆1
1(µ) sequence E0 ⊆ E1 ⊆ ... of

∆1
1 finite equivalence relations on X and a ∆1

1(µ) µ-conull set A ⊆ X such that E|A =
⋃
nEn|A.

We start with explicitly stating the effective version of the Feldman-Moore theorem.

Proposition 2 (Feldman-Moore). There exists a ∆1
1 sequence of involutions such that E is

equal to the union of their graphs; more precisely, there is a ∆1
1 function f : N ×X → X

such that for each n, fn is an involution, and E =
⋃
n∈N graph(fn).

Proof. The usual proof of the Feldman-Moore theorem is effective provided that one uses the
effective version of Lusin-Novikov (see for example 4F.17 of [Mos80]). �

Below let (fi)i∈N denote a ∆1
1 sequence of involutions as above and without loss of

generality assume that f0 = id. For any subequivalence relation F of E, put An,F =
{x ∈ X : ∀i < n(xFfi(x))} and dn(F,E) = 1 − µ(An,F ) (think of dn(F,E) as the distance
between F and the nth approximation of E).

The content and the proof of the following lemma are very similar to those of Lemma 3.1
in [Kec12].

Lemma 3. Let (εn)n∈N be a sequence of positive real numbers whose sum converges, and let
(Fn)n∈N be a sequence of Borel subequivalence relations of E such that dn(Fn, E) < εn. Then
E =

⋃
n∈NEn µ-a.e., where En =

⋂
m≥n Fm.

Proof. Let N = lim supnA
c
n,Fn

and note that by the Borel-Cantelli lemma, N is µ-null since
the sequence µ(Acn,Fn

) < εn is summable. Now for any x /∈ N , there is n such that for all
m ≥ n, x ∈ Am,Fm . Thus for any i and m ≥ max(i, n) =: k, xFmfi(x), and hence xEkfi(x).
Therefore, [x]E =

⋃
k∈N [x]Ek

. �

From this we get the following measure-theoretic characterization of hyperfiniteness that
enables using approximations by finite equivalence relations instead of increasing unions
(replaces qualitative with quantitative).

Proposition 4 (Conley–Miller). E is µ-hyperfinite if and only if for all ε > 0 and n ∈ N,
there exists a finite subequivalence relation F of E such that dn(F,E) < ε.

Proof. ⇒: Choose Fn to be such that dn(Fn, E) < 1
2n

and apply Lemma 3.
⇐: Let (En)n∈N be an increasing sequence of Borel subequivalence relations with E =

⋃
n∈NEn

µ-a.e. Given n ∈ N and ε > 0, note that (An,Em)m∈N is increasing and
⋃
m∈NAn,Em is a

µ-conull set. Hence, for some m, µ(An,Em) > 1− ε, and thus taking F = Em works. �
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1This note is almost entirely taken from the first section of [CM12].
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Now we effectively construct such finite approximations. Let (Un)n∈N be a recursive basis
for X that is closed under finite unions. For each s ∈ N<ω, let Fs denote the smallest
equivalence relation containing

⋃
m<n graph(fm|Us(m)

). A simple computation shows that the

sequence (Fs)s∈N<ω is ∆1
1 (as a subset of N<ω ×X2).

The following lemma shows that these Fs approximate any finite subequivalence relation
of E (although Fs itself may not be a finite equivalence relation).

Lemma 5 (Conley–Miller). If µ is E-quasi-invariant, then for any finite Borel subequivalence
relation F of E and ε > 0, there is s ∈ N<ω such that µ({x ∈ X : [x]Fs 6= [x]F}) < ε.

Proof. For each n, put Xn = {x ∈ X : [x]F ⊆ {fm(x) : m < n}}. Clearly Xn are increasing
and, because F is finite, X =

⋃
n∈NXn. Thus there is n ∈ N such that µ(Xn) > 1 − ε

2
.

Now for each m < n, put Am = {x ∈ Xn : xFfm(x)} and note that the smallest equivalence
relation F ′ containing

⋃
m<n graph(fm|Am) has the property that for all x ∈ Xn, [x]H = [x]F .

Thus, to prove the lemma, we only need to replace the sets Am by some basic open sets from
(Un)n∈N, which we do as follows: put fij = fi ◦ fj, for i, j < n, and use the regularity and
E-quasi-invariance of µ to get km ∈ N such that for all i, j < n,

µ(f−1ij (Ukm∆Am)) <
ε

2n3
.

Define s ∈ Nn by s(m) = km, for m < n, and put

Y := Xn \

( ⋃
i,j,m<n

f−1ij (Us(m)∆Am)

)
=
{
x ∈ Xn : ∀i, j,m < n(fij(x) ∈ Us(m) ↔ fij(x) ∈ Am)

}
,

noting that µ(Y ) > 1− ε, so it remains to show that for any x ∈ Y , [x]Fs = [x]F .
We chose the sets Us(m) and defined Y like this to ensure that for all x ∈ Y , all of the

points somehow related to x that we consider in the proof below are in

Z :=
{
x ∈ Xn : ∀m < n(x ∈ Us(m) ⇐⇒ x ∈ Am)

}
.

More precisely, fix x ∈ Y and note that

(i) {fij(x) : i, j < n} ⊆ Z,
(ii) {fm(x) : m < n} ⊆ Z,
(iii) [x]F ⊆ Z,

where (i) implies (ii) because f0 is the identity, and (ii) implies (iii) because x ∈ Xn. Now we
show that [x]Fs = [x]F .

[x]Fs ⊇ [x]F :[x]Fs ⊇ [x]F :[x]Fs ⊇ [x]F : Fix y ∈ [x]F . Since x ∈ Xn, there is m < n such that y = fm(x) and thus x ∈ Am.
But because x ∈ [x]F ⊆ Z, it follows that x is also in Us(m). Hence (x, y) ∈ graph(fm|Us(m)

),
so xFsy.

[x]Fs ⊆ [x]F :[x]Fs ⊆ [x]F :[x]Fs ⊆ [x]F : Take y ∈ [x]Fs . Thus, by the definition of Fs, there exist x0, ..., xl ∈ X such
that x0 = x, xl = y and for each k < l, there is i < n such that xk+1 = fi(xk) and at least
one of xk, xk+1 belongs to Us(i). We show by induction on k that xFxk. Suppose xFxk and
show that xkFxk+1. Let i < n be such that xk+1 = fi(xk) and at least one of xk, xk+1 is
in Us(i). Also let j < n be such that fj(x) = xk (such j exists since x ∈ Xn). Now note
that xk ∈ [x]F ⊆ Z by (iii), and xk+1 = fij(x) ∈ Z by (i). Thus, no matter which one of
xk, xk+1 is in Us(i), it would also be in Ai, and therefore xkFxk+1 (here we use that fi is an
involution). �
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The following lemma is used to define a finite version of Fs.

Lemma 6. The set B = {(s, x) ∈ N<ω ×X : [x]Fs is finite} is ∆1
1.

Proof. For any (s, x) ∈ N<ω ×X,

(s, x) ∈ B ⇐⇒ ∃n ∈ N∀m ∈ N(xFsfm(x)→ fm(x) ∈ {fi(x) : i < n}).
Clearly, the right hand side of this is a ∆1

1 definition. �

Now define F ′s to be Fs on Bs and the identity relation elsewhere. It is clear that in Lemma
5, we can replace Fs with F ′s. This and Proposition 4 imply the following:

Corollary 7. Suppose µ is E-quasi-invariant. Then E is µ-hyperfinite if and only if for all
ε > 0 and n ∈ N, there exists s ∈ N<ω such that dn(F ′s, E) = 1− µ(An,F ′

s
) < ε.

The following lemma will imply that the right side of Corollary 7 is ∆1
1(µ).

Lemma 8. If C ⊆ N×X is ∆1
1, then the set D ⊆ N×Q defined by

(n, q) ∈ D ⇐⇒ µ(Cn) > q

is ∆1
1(µ).

Proof. By applying the same to the complement of C, it is enough to show that D is Σ1
1(µ).

This can be done by applying basically the same proof as that of Theorem 2.2.3 of [Kec73]. �

Now we are ready to prove the main theorem.

Proof of Theorem 1. Firstly, note that without loss of generality we can assume that µ is
quasi-invariant since we can always replace it with µ′ =

∑
n≥1 2−nf ∗nµ as µ′ and µ agree on

E-invariant sets and hence it will not affect the statement of the theorem.
Define C ⊆ N<ω × N×X by

(s, n, x) ∈ C ⇐⇒ ∀m < n(xF ′sfm(x)).

Applying Lemma 8 to C, the function (s, n) 7→ µ(An,F ′
s
) is ∆1

1(µ). Thus so is the function
π : N → N<ω defined by n 7→ the least s ∈ N<ω such that 1 − µ(An,F ′

s
) < 2−n (such s

exists by Corollary 7). Now set En =
⋂
m≥n F

′
π(m) and put E ′ =

⋃
n∈NEn. Finally, let

Z = {x ∈ X : [x]E 6= [x]E′} and note that Z is ∆1
1(µ) since x ∈ Z ⇐⇒ ∃n ∈ N¬(xE ′fn(x)).

Moreover, by Lemma 3, Z is µ-null, so we are done. �
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