SEGAL’S EFFECTIVE WITNESS TO MEASURE-HYPERFINITENESS!

ANUSH TSERUNYAN

Let X be the Baire space (or any other recursively presented Polish space), E a countable
Al equivalence relation on X and p a Borel probability measure on X.
The aim of this note is to prove the following theorem.

Theorem 1 (Segal). If E is u-hyperfinite, then there exists a Ai(u) sequence Ey C Ey C ... of
A{ finite equivalence relations on X and a A}(u) p-conull set A C X such that E|a =, Enla.

We start with explicitly stating the effective version of the Feldman-Moore theorem.

Proposition 2 (Feldman-Moore). There exists a Al sequence of involutions such that E is
equal to the union of their graphs; more precisely, there is a A} function f: N x X — X
such that for each n, f, is an involution, and E =, oy graph(f,).

Proof. The usual proof of the Feldman-Moore theorem is effective provided that one uses the
effective version of Lusin-Novikov (see for example 4F.17 of [Mos80]). O

Below let (f;)ieny denote a Al sequence of involutions as above and without loss of
generality assume that f; = id. For any subequivalence relation F' of E, put A, p =
{r e X :Vi<n(zFfj(x))} and d,(F,E) = 1 — u(A, r) (think of d,(F, E) as the distance
between F' and the n'" approximation of E).

The content and the proof of the following lemma are very similar to those of Lemma 3.1
in [Kecl2].

Lemma 3. Let (€,)nen be a sequence of positive real numbers whose sum converges, and let
(EFy)nen be a sequence of Borel subequivalence relations of E such that d,,(F,, E) < &,. Then
E =U,en En p-a.e., where E,, = ann F,,.

Proof. Let N = limsup,, A7,  and note that by the Borel-Cantelli lemma, NN is p-null since
the sequence p(Aj5, ) < &, is summable. Now for any z ¢ N, there is n such that for all
m>n, x € A p,. Thus for any ¢ and m > max(i,n) =: k, F,, fi(z), and hence xE} f;(x).
Therefore, [#)p = Uypen(2]E, - O

From this we get the following measure-theoretic characterization of hyperfiniteness that
enables using approximations by finite equivalence relations instead of increasing unions
(replaces qualitative with quantitative).

Proposition 4 (Conley-Miller). E is u-hyperfinite if and only if for alle > 0 and n € N,
there exists a finite subequivalence relation F' of E such that d,(F,E) < ¢.

Proof. =: Choose F,, to be such that d,(F,, E) < 2% and apply Lemma 3.
<: Let (E,)nen be an increasing sequence of Borel subequivalence relations with E' = J, .y En
p-a.e. Given n € N and € > 0, note that (A, g, )men is increasing and J,,.y An g, Is a

p-conull set. Hence, for some m, u(A, g, ) > 1 — ¢, and thus taking F' = E,, works. U
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Now we effectively construct such finite approximations. Let (U, )nen be a recursive basis
for X that is closed under finite unions. For each s € N<“, let F, denote the smallest
equivalence relation containing J,,,, graph(fm|v,,,,). A simple computation shows that the
sequence (F})sen<w is Al (as a subset of N< x X?).

The following lemma shows that these F§ approximate any finite subequivalence relation
of E (although Fj itself may not be a finite equivalence relation).

Lemma 5 (Conley-Miller). If u is E-quasi-invariant, then for any finite Borel subequivalence
relation F' of E and € > 0, there is s € N such that p({z € X : [z]r, # [z]r}) < €.

Proof. For each n, put X,, = {z € X : [z]p C {fm(x) : m <n}}. Clearly X,, are increasing
and, because F' is finite, X = (J,cy Xn. Thus there is n € N such that p(X,) > 1 — 5.
Now for each m < n, put A,, = {z € X,, : F f,,(x)} and note that the smallest equivalence
relation I containing J,,.,, graph(fm|a,,) has the property that for all x € X,,, [x]y = [z]p.
Thus, to prove the lemma, we only need to replace the sets A,, by some basic open sets from
(Un)nen, which we do as follows: put fi;; = f; o f;, for i,j < n, and use the regularity and
E-quasi-invariance of p to get k,, € N such that for all 7,5 < n,
€

:u(fijl(UkmAAm)) < 3

Define s € N by s(m) = ky,,, for m < n, and put

Y = Xn\< U fi;(Us(m)AAm))

i,0,m<n
= {f S Xn : Vi,j,m < n(fm(m) S Us(m) — f”(SL’) S Am)} s

noting that u(Y) > 1 — €, so it remains to show that for any € Y, [x]r, = [z]F.
We chose the sets U,y and defined Y like this to ensure that for all x € Y, all of the
points somehow related to x that we consider in the proof below are in

Z:={re€X,:Vm<n(z € Uyy < z€A,)}.

More precisely, fix £ € Y and note that

(i> {f1]($) 11,7 < n} cZ,

(i) {fm(z) :m<n}CZ

(iii) [2]r C Z,

where (i) implies (ii) because fy is the identity, and (ii) implies (iii) because = € X,,. Now we
show that [z|p, = [2]F.

[z]F, 2 [z]F: Fix y € [z]p. Since z € X,,, there is m < n such that y = f,,(x) and thus z € A,,.
But because z € [z]r C Z, it follows that z is also in Uyy. Hence (z,y) € graph(fu|u, ., ),
so xFyy.

[z]F, C [z]F: Take y € [x]r,. Thus, by the definition of Fj, there exist zg,...,z; € X such
that zo = z,2; = y and for each k < [, there is i < n such that x;,1 = fi(zx) and at least
one of xy, xx41 belongs to Uy;). We show by induction on % that xFx). Suppose xF'x) and
show that zyFzg 1. Let i < n be such that x5 = f;(x) and at least one of xy, xpyq is
in Uy;). Also let j < n be such that fj(x) = x; (such j exists since € X,,). Now note
that z;, € [z]p C Z by (iii), and xp41 = fij(x) € Z by (i). Thus, no matter which one of
Tk, Tpy1 18 in Uy, it would also be in A;, and therefore x Fxj,y (here we use that f; is an

involution). O
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The following lemma is used to define a finite version of Fj.
Lemma 6. The set B ={(s,z) € N x X : [z]r, is finite} is Af.
Proof. For any (s,z) € N x X
(s,x) € B <= 3n € NVm € N(xFf.(x) = fm(x) € {fi(x) : i <n}).
Clearly, the right hand side of this is a A} definition. 0

Now define F? to be Fy on By and the identity relation elsewhere. It is clear that in Lemma
5, we can replace Fy with F!. This and Proposition 4 imply the following:

Corollary 7. Suppose p is E-quasi-invariant. Then E is p-hyperfinite if and only if for all
e >0 and n € N, there exists s € N such that d,,(F., E) =1 — p(An ) < e.

The following lemma will imply that the right side of Corollary 7 is Al(u).

Lemma 8. If C C N x X is A}, then the set D C N x Q defined by
(n,q) € D <= u(Cy) >q
is Af(p).

Proof. By applying the same to the complement of C, it is enough to show that D is 3{(u).
This can be done by applying basically the same proof as that of Theorem 2.2.3 of [Kec73]. O

Now we are ready to prove the main theorem.

Proof of Theorem 1. Firstly, note that without loss of generality we can assume that g is
quasi-invariant since we can always replace it with ¢/ =" ., 27" f*u as ¢/ and p agree on
E-invariant sets and hence it will not affect the statement of the theorem.

Define C C N<¥ x N x X by

(s,n,z) € C < VYm < n(zF.fn(x)).

Applying Lemma 8 to C, the function (s,n) — (A, ) is Aj(p). Thus so is the function
m : N = N<“ defined by n ~— the least s € N<¥ such that 1 — p(A, ) < 27" (such s
exists by Corollary 7). Now set E, = (-, I}, and put E' = {J, oy En. Finally, let

m>n = w(m
Z ={x € X :[z]g # [x]p} and note that Z is Al(u) since x € Z <= In € N=(xFE'f,(z)).
Moreover, by Lemma 3, Z is pu-null, so we are done. U
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