HJORTH'S PROOF OF THE EMBEDDABILITY OF HYPERFINITE EQUIVALENCE RELATIONS INTO E_0

ANUSH TSERUNYAN

The following theorem was proven in [DJK94, Theorem 7.1]. This note gives an alternative proof by Greg Hjorth.

Theorem (Dougherty–Jackson–Kechris). Every hyperfinite equivalence relation is Borel embeddable into E_0 .

Proof (Hjorth). Without loss of generality assume that $X = 2^{\mathbb{N}}$ and E is a hyperfinite equivalence relation on X with $E = \bigcup_{n \in \mathbb{N}} F_n$, where $\{F_n\}$ is an increasing sequence of finite Borel equivalence relations on X with F_0 being the identity relation. Let \mathcal{N} denote the Baire space. It is enough to show that E is Borel embeddable into E_0 on \mathcal{N} (eventual agreement of sequences of natural numbers).

Fix a Borel linear ordering < on X. Define a map $f : X \to \mathcal{N}$ by $x \mapsto \sigma_x$, where each $\sigma_x(n)$ is defined as follows: if $[x]_{F_n} = \{y_0^n, \dots, y_{k_n}^n\}$ with $y_0^n < \dots < y_{k_n}^n$ then

- $\sigma_x(0)$ is the code (a natural number) of $(y_0^0|_0; 0)$ (in some a priori fixed coding);
- for $n \ge 1$, $\sigma_x(n)$ is the code of

$$(y_0^n \mid_n, y_1^n \mid_n, ..., y_{k_n}^n \mid_n; i(n, 0), i(n, 1), ..., i(n, k_{n-1})),$$

where $i(n, j) \in \mathbb{N}$ and $y_j^{n-1} = y_{i(n,j)}^n$ for all $j \leq k_{n-1}$.

It is clear from the definition that f is a Borel homomorphism from E to E_0 since $\forall x, y \in X$, if xEy then xF_ny for some n and hence $\sigma_x(m) = \sigma_y(m)$, for all $m \ge n+1$.

Claim. For all $x, y \in X$ and $n \in \mathbb{N}$, if $\forall m \ge n, \sigma_x(m) = \sigma_y(m)$ then xF_ny .

Proof of Claim. Let $[x]_{F_n} = \{y_0^n, ..., y_{k_n}^n\}$ with $y_0^n < ... < y_{k_n}^n$. It is enough to show that we can recover every y_j^n from $\sigma_x |_{[n,+\infty)}$, for $j \leq k_n$. Indeed, for all $m \geq n$, let $\sigma_x(m)$ be equal to the code of

$$(s_0^m, s_1^m, \dots, s_{k_m}^m; i(m, 0), i(m, 1), \dots, i(m, k_{m-1})),$$

where $s_j^m \in \mathbb{N}^m$ and $i(m,l) \in \mathbb{N}$, for all $j \leq k_m, l \leq k_{m-1}$. Fix $j \leq k_n$ and define $J : \{n, n+1, ...\} \to \mathbb{N}$ recursively by

$$J(m) = \begin{cases} j & \text{if } m = n\\ i(m, J(m-1)) & \text{if } m \ge n+1 \end{cases}$$

By the definitions of σ_x and J, $s_{J(m)}^m \sqsubseteq s_{J(m+1)}^{m+1}$, for all $m \ge n$, and $y_j^n = \bigcup_{m \ge n} s_{J(m)}^m$.

This claim implies that f is a Borel reduction from E to E_0 . Moreover, it implies that f is an embedding since F_0 is the identity relation on X.

References

[DJK94] R. Dougherty, S. Jackson, and A. S. Kechris, The Structure of Hyperfinite Borel Equivalence Relations, Trans. of the Amer. Math. Soc. 341 (1994), no. 1, 193–225.

Date: Fall, 2010.