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The purpose of this note is to show that any countable graph admits a realization as an
orthogonality graph in a Hilbert space, while providing an uncountable counter-example.

Proposition 1. Every countable graph G = (V,E) is realizable as an orthogonality graph in
a Hilbert space; more precisely, to every vertex in V , one can assign a vector in a separable
Hilbert space such that for any u, v ∈ V , u ⊥ v if and only if uEv.

Proof. Writing V = (vn)n∈N and the vector 0 to all the vn. Let (en)n∈N be an orthonormal
sequence in a separable Hilbert space. The construction will be done by induction on n,
where at the nth stage, the only nonzero vectors will be among v1, v2, ..., vn with norms at
most

∑n
k=1 2−k and such that vk ∈ Span(ek, ..., en) for each k ≤ n; moreover, the restricting

of G to these vertices coincides with their orthogonality graph. Now put v1 ..= e1 and suppose
that v1, v2, ..., vn are as desired and put vn ..= 2−(n+1)en+1. Let D ⊆ {vk}k≤n be the set of all

vertices nonadjacent to vn in G. Redefine each v ∈ D as follows: v ..= v + 2−(n+1)en+1. �

We now work towards the counter-example in the uncountable case.

Observation 2. Let A = {ui}ni=1, n ≥ 2, be a set of unit vectors in complex vector space
such that any two distinct vectors in A form the same angle θ ∈ C; more precisely, for all
distinct i, j ≤ n, 〈ui, uj〉 = θ. Then θ ∈ R and θ ≥ 1/(n− 1).

Proof. First off, since 〈u1, u2〉 = θ = 〈u2, u1〉, θ must be real. Now consider u = u1+u2+...+un
and write that its norm is non-negative:

〈u, u〉 = n+ n(n− 1)θ ≥ 0.

�

The following lemma is proved by a cool averaging trick that comes from the general
ergodic theorem that involves the closure of the convex hull.

Lemma 3 (Tao). Let I be an infinite set and let A = (ui)i∈I be a sequence of unit vectors
in a Hilbert space H such that for any two distinct i, j ∈ I, the corresponding vectors form
the same angle; more precisely, there is θ ∈ C such that ∀i 6= j ∈ I, 〈ui, uj〉 = θ. Then θ is

non-negative real and these vectors have “an average”, i.e. there is a vector v of norm
√
θ in

the closed convex hull of A such that, for every i ∈ I, ui = v +
√

1− θwi with wi ⊥ v and
such that {wi}i∈I is orthonormal.

Proof. The non-negativity of θ follows from the above observation. For the rest, let (un)n∈N
be a countable sequence from A and, for each n ∈ N, put

vn ..=
1

n
(u1 + u2 + ...+ un).
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Claim. The sequence (vn)n∈N is Cauchy.

Proof. For n < m ∈ N, we compute:

‖vm − vn‖2 = 〈vm − vn, vm − vn〉
= 〈vn, vn〉+ 〈vm, vm〉 − 2 Re 〈vn, vm〉

=
1

n2
[n+ n(n− 1)θ] +

1

m2
[m+m(m− 1)θ]− 2

nm
[n+ n(m− 1)θ]

=
1

n
[1 + (n− 1)θ] +

1

m
[1 + (m− 1)θ]− 2

m
[1 + (m− 1)θ]

=
1

n
[1 + (n− 1)θ]− 1

m
[1 + (m− 1)θ]

→ 0 as n,m→∞.
�

Note that 〈vn, vn〉 = 1
n2 [n + n(n− 1)θ]→ θ, so ‖v‖ =

√
θ. Moreover, since for any i ∈ I

and n ∈ N, 〈ui, vn〉 is equal to either nθ
n

= θ or 1+(n−1)θ
n

, 〈ui, v〉 = θ.

For each i ∈ I, write the orthogonal decomposition of ui over v: ui = v +
√

1− θwi,
so wi is a normal vector orthogonal to v. Now for any distinct i, j ∈ I, θ = 〈ui, uj〉 =
〈v, v〉+ 〈wi, wj〉 = θ + 〈wi, wj〉, so 〈wi, wj〉 = 0. �

We now give an example of an uncountable (in fact, bipartite) graph that doesn’t admit
an orthogonality graph realization in a Hilbert space.

Example 4. Let I be a set of cardinality
(
2(2c)

)+
and let U ..= {uJ}J∈P(I), V

..= {vi}i∈I be
our disjoint partitions of vertices. Put an edge between uJ and vi if and only if i ∈ J .

Proposition 5. The graph in Example 4 doesn’t have an orthogonality graph realization in a
Hilbert space.

Proof. Suppose it does, so assume that uJ , vi are vectors in some Hilbert space H such that
i ∈ J if and only if uJ ⊥ vi. Since there are only continuum-many possibilities for 〈vi, vj〉,
i, j ∈ I, Erdős–Rado gives an uncountable (in fact, (2c)+) set J ⊆ I and a nonzero θ ∈ C
such that for any distinct i, j ∈ J , 〈vi, vj〉 = θ. By Lemma 3, θ > 0 and there is a vector

v ∈ H of norm
√
θ such that for every i ∈ J , vi = v +

√
1− θwi, where wi ⊥ v and the

sequence (wi)i∈J is orthonormal.
Now partition J into two uncountable sets J0 and J1. Note that uJ0 is orthogonal to

every vi with i ∈ J0, so it must be orthogonal to v as well since otherwise, it would have to
be nonorthogonal to every wi with i ∈ J0, contradicting Bessel’s inequality. On the other
hand, uJ0 is nonorthogonal to every vj with j ∈ J1, so, since it’s orthogonal to v, it must be
nonorthogonal to every wj with j ∈ J1, again contradicting Bessel’s inequality. �
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