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Abstract. For a continuous action of a countable discrete group G on a Polish space X, a
countable Borel partition P of X is called a generator if GP ∶= {gP ∶ g ∈ G,P ∈ P} generates
the Borel σ-algebra of X. For G = Z, the Kolmogorov–Sinai theorem gives a measure-
theoretic obstruction to the existence of finite generators: they do not exist in the presence
of an invariant probability measure with infinite entropy. It was asked by Benjamin Weiss
in the late 80s whether the nonexistence of any invariant probability measure guarantees
the existence of a finite generator. We show that the answer is positive (in fact, there is a
32-generator) for an arbitrary countable group G and σ-compact X (in particular, for locally
compact X). We also show that any continuous aperiodic action of G on an arbitrary Polish
space admits a 4-generator on a comeager set, thus giving a positive answer to a question
of Alexander Kechris asked in the mid-90s.

Furthermore, assuming a positive answer to Weiss’s question for arbitrary Polish spaces
and G = Z, we prove the following dichotomy: every aperiodic Borel action of Z on a
Polish space X admits either an invariant probability measure of infinite entropy or a finite
generator. As an auxiliary lemma, we prove the following statement, which may be of
independent interest: every aperiodic Borel action of a countable group G on a Polish space
X admits a G-equivariant Borel map to the aperiodic part of the shift action G↷ 2G.

We also obtain a number of other related results, among which is a criterion for the
nonexistence of non-meager weakly wandering sets for continuous actions of Z. A conse-
quence of this is a negative answer to a question asked by Eigen–Hajian–Nadkarni, which
was also independently answered by Benjamin Miller.
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1. Introduction

1.A. Definition and examples. Throughout the paper let G denote a countably infinite
discrete group and let 1G denote the identity of G. Let X be a Borel G-space, i.e. a standard
Borel space (see [Kec95, 12.5]) equipped with a Borel action of G. If X is a Polish topological
space and G acts continuously, we call it a Polish G-space. For g ∈ G and x ∈ X, we denote
the result of the action of g on x by gx (instead of g ⋅ x).

Consider the following game: Player I chooses a finite or countable Borel partition1 I =
{An}n<k of X (k ≤∞), then Player II chooses x ∈ X and Player I tries to guess x by asking
questions to Player II regarding which piece of the partition x lands in when moved by a
certain group element. More precisely, for every g ∈ G, Player I asks “To which An does gx
belong?” and Player II gives an index ng < k as an answer. Whether or not Player I can
uniquely determine x from the sequence (ng)g∈G of responses depends on how cleverly he
chose the partition I. We call I a generator (or a generating partition) if it guarantees that

1We call a countable partition Borel if each piece of it is a Borel set.
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Player I will determine x correctly no matter which x Player II chooses. Here is the precise
definition, which also explains the terminology.

Definition 1.1 (Generator). For a Borel G-space X, a countable Borel partition I = {An}n<k
of X (k ≤∞) is called a generator if GI ∶= {gAn ∶ g ∈ G,n < k} generates the Borel σ-algebra
of X. We also call I a k-generator, and, if k <∞, a finite generator.

Examples 1.2.

(a) For k ≤∞, let X = kG (with the understanding that X = NG when k =∞) be equipped
with the product topology and the shift action of G, i.e. gx(h) ∶= x(g−1h), for g, h ∈
G,x ∈ X. For each n < k, put Vn = {x ∈ X ∶ x(1G) = n}. The partition I = {Vn}n<k of X
is clearly a generator because GI is a sub-basis for the product topology on kG.

(b) Let X = S1 be the unit circle in the complex plain, α ∈ R be irrational relative to π (i.e.
α/π ∉ Q), and Tα ∶ X → X be the rotation by angle α, i.e. Tα(z) = eiαz, for z ∈ X. This
induces a continuous action Z ↷ X and we claim that the partition I = {Cu,Cl} of X
into upper and lower half circles is a generator. This is not hard to verify directly, using
the fact that every orbit is dense, but it easier to check the equivalent condition to being
a generator given in (2) of Proposition 1.3 below.

(c) If a Borel G-space X admits a Borel weakly wandering (see Definition 7.1) complete
section2 W , e.g. the translation action of Z on R with W = [0,2], then it is not hard
to prove that it admits a 3-generator (see Proposition 7.2 for a short and self-contained
proof).

(d) The translation action of Z on R actually admits a 2-generator because the exponentia-
tion function 2x makes it Borel isomorphic to the Borel Z-space R>0, where the action of
1Z is given by multiplication by 2; the latter action in its turn is Borel isomorphic to an
invariant subset of the shift action Z ↷ 2Z via the binary representation, which, by (a)
above, has a 2-generator. The fact that the translation action Z ↷ R has a 2-generator
is true more generally (Proposition 7.10) for smooth (Definition 3.9) free actions.

For a Borel G-space X and a Borel partition I = {An}n<k of X, k ≤ ∞, let fI ∶ X → kG

be defined by x ↦ (ng)g∈G, where ng is such that gx ∈ Ang . This is often called the symbolic
representation or coding map for the process (X,G,I). Clearly fI is a G-equivariant Borel
map and, for every x ∈X, fI(x) is the sequence of responses of Player I in the above game.

Proposition 1.3. For a Borel G-space X and a Borel partition I = {An}n<k, k ≤ ∞, the
following are equivalent:

(1) I is a generator.
(2) GI separates points3.
(3) The coding map fI ∶X → kG is one-to-one.

Proof. The only part worth proving is (3)⇒(1), so suppose fI is one-to-one. Then, by the
Luzin–Souslin theorem (see [Kec95, 15.1]), fI is a G-equivariant Borel isomorphism between
X and Y ∶= fI(X), so it is enough to show that the partition fI(I) ∶= {fI(An)}n<k of

2For an action G↷X, a subset of X is called a complete section if it non-trivially intersects every orbit.
3A collection F of subsets of X separates points if for all distinct x, y ∈ X there is A ∈ F such that

x ∈ A⇎ y ∈ A
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Y is a generator for the shift action of G on Y . But, in the notation of Example 1.2(a),
fI(An) = Vn ∩ Y , for each n < k, so fI(I) is indeed a generator for G↷ Y . �

Conversely, given a G-equivariant Borel map f ∶X → kG for some k ≤∞, define a partition
If = {An}n<k by An = f−1(Vn), where Vn is as in Example 1.2(a). Note that fIf = f . This
and Proposition 1.3 imply the following.

Corollary 1.4. For k ≤∞, X admits a k-generator if and only if there is a G-equivariant
Borel embedding of X into kG.

In all arguments to follow in this paper, we use these equivalent descriptions of a generator
without comment.

1.B. Countable generators. In [Wei87], it was shown that every aperiodic (i.e. having
no finite orbits) Z-space admits a countable generator. This was later generalized to any
countable group in [JKL02].

Theorem 1.5 (Weiss, Jackson–Kechris–Louveau). Every aperiodic Borel G-space X admits
a countable generator. In particular, there is a Borel G-equivariant embedding of X into NG.

This is sharp in the sense that we could not hope to obtain a finite generator solely from
the aperiodicity assumption because of the measure-theoretic obstruction provided by the
Kolmogorov–Sinai theorem (see 1.9) as explained below. For example, the action of Z on
[0,1]Z∖A by shift, where A is the set of periodic points, is aperiodic, but it does not admit a
finite generator since it admits an invariant probability measure of infinite entropy, namely,
the Lebesgue measure.

Thus, the question of the existence of countable generators is completely resolved and the
current paper studies the existence of finite generators.

1.C. Entropy and finite generators. Generators arose in the study of entropy in ergodic
theory. Let (X,µ,T ) be a dynamical system, i.e. (X,µ) is a standard probability space and
T is a Borel measure preserving automorphism of X. We can interpret the above game as
follows:

● X is the set of possible pictures of the world,
● I is an experiment that Player I conducts,
● the point x ∈X that Player II chooses is the true picture of the world,
● T is the unit of time.

Assume that I is finite (indeed, we want our experiment to have finitely many possible
outcomes). Player I repeats the experiment every day (also going back in time) and Player
II tells its outcome. The goal is to find the true picture of the world x with probability 1.
This happens exactly when I is a generator µ-a.e.

The static entropy of the experiment I = {Pn}n<k is defined by

(1.6) hµ(I) = −∑
n<k

µ(An) log2 µ(An),

and intuitively, it measures our probabilistic uncertainty about the outcome of the experi-
ment. For example, if for some n < k, An had measure 1, then we would be probabilistically
certain that the outcome is going to be in An and hµ(I) = 0. On the other hand, if all of
An had probability 1

k , then our uncertainty would be the highest, namely, hµ(I) = log2 k.
Equivalently, according to Shannon’s interpretation, hµ(I) measures how much information
we gain from learning the outcome of the experiment.
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We now define the time average or dynamic entropy of I by

(1.7) hµ(I, T ) = lim
n→∞

1

2n + 1
hµ(

n

⋁
i=−n

T iI),

where ⋁ denotes the join (the least common refinement) of the partitions. The sequence in
the limit is decreasing and hence the limit always exists and is finite (see [Gla03] or [Rud90]).

Finally the entropy of the dynamical system (X,µ,T ) is defined as the supremum over all
(finite) experiments:

(1.8) hµ(T ) = sup
I
hµ(I, T ),

and it could be finite or infinite. Now it is plausible that if I is a finite generator (and hence
Player I wins the above game), then hµ(I, T ) should be all the information there is to obtain
about X and hence I achieves the supremum above. This is indeed the case as the following
theorem ([Gla03, Theorem 14.33]) shows.

Theorem 1.9 (Kolmogorov–Sinai, ’58–59). If I is a finite generator modulo µ-NULL, then
hµ(T ) = hµ(I, T ). In particular, hµ(T ) ≤ log2(∣I ∣) <∞.

Here µ-NULL denotes the σ-ideal of µ-null sets and, by definition, a statement holds
modulo a σ-ideal I if it holds on X∖Z, for some Z ∈ I. We will also use this for I = MEAGER
(the σ-ideal of meager sets in a Polish space).

In case of ergodic systems, i.e. dynamical systems where every measurable invariant set
is either null or conull, the converse of Kolmogorov–Sinai theorem is true (see [Kri70]):

Theorem 1.10 (Krieger, ’70). Suppose (X,µ,T ) is ergodic. If hµ(T ) < log2 k, for some
k ≥ 2, then there is a k-generator modulo µ-NULL.

1.D. Weiss’s question and potential dichotomy theorems. Now let X be just a Borel
Z-space with no measure specified. By the Kolmogorov–Sinai theorem, if there exists an
invariant Borel probability measure on X with infinite entropy, then X does not admit a
finite generator. Is this the only obstruction to having a finite generator? More precisely:

Question 1.11. If a Borel Z-space X does not admit any invariant Borel probability measure
of infinite entropy, does it admit a finite generator?

The following seemingly simpler question was first asked by Weiss in [Wei87]:

Question 1.12 (Weiss, ’87). If a Borel Z-space X does not admit any invariant Borel
probability measure, does it admit a finite generator?

It is shown below in Section 9 that these two questions are actually equivalent, and thus,
a positive answer to Weiss’s question would imply the following dichotomy theorem:

Theorem 9.5. Suppose the answer to Question 1.12 is positive and let X be an aperiodic
Borel Z-space. Then exactly one of the following holds:

(1) there exists an invariant Borel probability measure with infinite entropy;
(2) X admits a finite generator.

We remark that the nonexistence of an invariant ergodic probability measure of infinite
entropy does not guarantee the existence of a finite generator. For example, let X be a
direct sum of uniquely ergodic actions Z↷Xn such that the entropy hn of each Xn is finite
but hn →∞. Then X does not admit an invariant ergodic probability measure with infinite
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entropy since otherwise it would have to be supported on one of the Xn, contradicting the
unique ergodicity. Neither does X admit a finite generator since that would contradict the
Kolmogorov–Sinai theorem applied to Xn for large enough n.

However, assuming again that the answer to Question 1.12 is positive, we prove the fol-
lowing dichotomy suggested by Kechris:

Theorem 9.3. Suppose the answer to Question 1.12 is positive and let X be an aperiodic
Borel Z-space. Then exactly one of the following holds:

(1) there exists an invariant ergodic Borel probability measure with infinite entropy,
(2) there exists a partition {Yn}n∈N of X into invariant Borel sets such that each Yn admits

a finite generator.

The proofs of these dichotomies (presented in Section 9) use the Ergodic Decomposition
Theorem and a uniform version of Krieger’s theorem in tandem with Theorem 8.12, which
provides a finite partition that separates the equivalence classes of an invariant smooth
equivalence relation (Definition 8.11).

1.E. Weiss’s question for an arbitrary group and the main result of the paper.
Because Questions 1.11 and 1.12 are equivalent, we may focus on answering the latter.
Moreover, since the statement of Question 1.12 does not use the notion of entropy, one may
as well state it for an arbitrary countable group G as it is done in [JKL02]:

Question 1.13 (Weiss ’87, Jackson–Kechris–Louveau ’02). Let G be a countable group and
X be a Borel G-space. If X does not admit any invariant Borel probability measure, does it
admit a finite generator?

In order to state our answer, we need the following:

Definition 1.14. Let X be a Borel G-space and denote its Borel σ-algebra by B(X). For a
topological property P (e.g. Polish, σ-compact, etc.), we say that X admits a P topological
realization, if there exists a Hausdorff second countable topology on X satisfying P such that
it makes the G-action continuous and its induced Borel σ-algebra is equal to B(X).

We remark that every Borel G-space admits a Polish topological realization4, see, [Kec95,
13.12.ii]. The main result of this paper is a positive answer to Question 1.13 in case X has
a σ-compact realization:

Theorem 5.7. Let X be a Borel G-space that admits a σ-compact realization. If there is
no G-invariant Borel probability measure on X, then X admits a Borel 32-generator.

For example, Question 1.13 has a positive answer when G acts continuously on a locally
compact or even just σ-compact Polish space.

Remark 1.15. The number 32 in the above theorem comes from the fact that the generator
is constructed as the partition generated by 5 Borel sets.

Remark 1.16. The fact that a concrete numerical bound of 32 is obtained in the conclusion
of the above theorem is somewhat surprising. However, Robin Tucker-Drob pointed out that
if Question 1.13 had a positive answer, then automatically there would be a uniform finite

4This is actually true also for an uncountable Polish group G, but it is a highly non-trivial result of Becker
and Kechris, see [BK96, 5.2]
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bound on the number generators; indeed, otherwise, there is an unbounded sequence (kn)n∈N
of natural numbers such that for each n ∈ N, there is a Borel G-space Xn that

(i) does not admit an invariant probability measure,
(ii) admits a kn-generator,
(iii) does not admit a k-generator for k < kn.

Then, letting X be the disjoint union of the Xn, n ∈ N, we see that X still does not admit
an invariant probability measure, but neither does it admit a finite generator, contradicting
the assumption that the answer to Question 1.13 is positive.

Addendum 1.17. In the original version of the current paper, it was also asked whether
every Borel G-space admits a σ-compact realization. However, this was later answered
negatively by Conley, Kechris and Miller in [CKM13].

Before explaining the idea of the proof of the above theorem, we present previously known
results as well as other related results obtained in this paper.

1.F. Finite generators in the measure-theoretic setting. The following result gives a
positive answer to a version of Question 1.13 in the measure-theoretic context.

Theorem 1.18 (Krengel–Kuntz [Kre70,Kun74]). Let (X,µ) be a standard probability space
equipped with a nonsingular5 Borel action of G. If there is no invariant Borel probability
measure absolutely continuous with respect to µ, then X admits a 2-generator modulo µ-
NULL.

The proof of this uses a version of the Hajian–Kakutani–Itô theorem (see 1.21 below),
which states that the hypothesis of the Krengel–Kuntz theorem is equivalent to the existence
of a weakly wandering Borel set (see Definition 7.1) of arbitrarily large µ-measure6. However,
as explained below in Subsection 1.H, the analogues of the Hajian–Kakutani–Itô theorem
fail in the Borel and Baire category settings. Therefore, other means needed to be used to
obtain the results of the current paper.

1.G. Finite generators in the Baire category setting. In the mid-’90s, Kechris asked
whether an analogue of the Krengel–Kuntz theorem holds in the context of Baire category
(see [JKL02, 6.6.(B)] for a more particular version of this question), more precisely:

Question 1.19 (Kechris, mid-’90s). Does every aperiodic Polish G-space admit a finite
generator on an invariant comeager set?

The nonexistence of invariant measures is not mentioned in the hypothesis of the question
because it is automatic in the context of Baire category due to the following:

Theorem 1.20 (Kechris–Miller [KM04, 13.1]). For any aperiodic Polish G-space, there is
an invariant comeager set that does not admit any invariant probability measure.

Thus, a positive answer to Question 1.13 for all Borel G-spaces would imply a positive
answer to Question 1.19, but the latter does not follow from Theorem 5.7. However, using
entirely different techniques, we still give an affirmative answer to Question 1.19:

Theorem 10.1. Any aperiodic Polish G-space admits a 4-generator on an invariant comea-
ger set.

5An action is nonsingular if it preserves the µ-null sets.
6Here, by arbitrarily large we mean arbitrarily close to 1.
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The proof of this is entirely contained in Section 10 and can be read independently from
the rest of the paper. It uses the Kuratowski–Ulam method introduced in the proofs of
Theorems 12.1 and 13.1 in [KM04]. This method was inspired by product forcing and its
idea is as follows. Suppose we want to prove the existence of an object A that satisfies a
certain condition on a comeager set (in our case a finite partition). We give a parametrized
construction of such objects Aα, where the parameter α ranges over 2N or NN (or any other
Polish space), and then try to show that for comeager many values of the parameter α, the
object Aα has the desired property Φ on a comeager set. In other words, we want to prove

∀∗α∀∗xΦ(α,x),

where ∀∗ means “for comeager many”. Now the key point is that the Kuratowski–Ulam
theorem allows us to switch the order of the quantifiers and prove

∀∗x∀∗αΦ(α,x)

instead. The latter is often an easier task since it allows us to work locally with a fixed
x ∈X.

1.H. Connections with weakly wandering and traveling sets. Going back to the
Borel setting and Question 1.13, we now explore the hypothesis of the question, namely,
the nonexistence of an invariant probability measure. In the measure-theoretic setting, the
latter is tightly connected to weakly wandering sets (Definition 7.1):

Theorem 1.21 (Hajian–Kakutani–Itô [HK64, HI69]). Let (X,µ) be a standard probability
space equipped with a nonsingular Borel action of G. There is no invariant Borel probability
measure equivalent to µ if and only if there is a µ-positive weakly wandering Borel set.

In the Borel setting, the following statement would be an analogue of Theorem 1.21: a
Borel G-space does not admit any invariant Borel probability measure if and only if it admits
a weakly wandering Borel complete section. However, in [EHN93] the authors show that it
does not hold. Nevertheless, their counterexample does not rule out local versions of the
statement, leaving the following question unsettled [EHN93, question (ii) on page 9]:

Question 1.22 (Eigen–Hajian–Nadkarni, ’93). Let X be a Borel Z-space. If X does not ad-
mit an invariant probability measure, is there a countably generated (by Borel sets) partition
of X into invariant sets, each of which admits a weakly wandering Borel complete section?

We define a related notion of locally weakly wandering sets (Definition 7.1) — a general-
ization of weakly wandering sets, and show that the presence of a locally weakly wandering
Borel complete section still gives a 4-generator (Theorem 7.5). However, we give an example
(Corollary 11.11) of a Polish G-space that does not support an invariant probability measure,
but neither does it admit a locally weakly wandering Borel complete section nor a partition
as in Question 1.22, thus providing a negative answer to the latter question. This result
is a consequence of a criterion for the nonexistence of non-meager weakly wandering sets
(Theorem 11.7), which also implies that the analogues of the Hajian–Kakutani–Itô theorem
fail not only in the Borel, but also in the Baire category setting. Ben Miller pointed out that
he had also obtained a negative answer to Question 1.22 in [Mil04, Example 3.13].

We further generalize locally weakly wandering sets to traveling sets (Definition 3.1) and
observe as an immediate consequence of Nadkarni’s theorem (see Subsection 1.J and Theo-
rem 1.26) that a Borel G-space does not admit an invariant probability measure if and only if
it admits a Borel traveling complete section (Proposition 3.7). Thus, Question 1.13 amounts
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to whether the existence of a Borel traveling complete section implies the existence of a
finite generator. Regarding this formulation of the question, the strongest result obtained
in the current paper is as follows: we define an intermediate (between traveling and locally
weakly wandering) notion of locally finitely traveling sets (Definition 6.2) and prove that the
presence of a Borel locally finitely traveling complete section implies the existence of a 32-
generator (Corollary 6.5). Unlike the analogous results with weakly wandering and locally
weakly wandering sets (Proposition 7.2 and Theorem 7.5), this result is nonconstructive —
its proof uses the same machinery as that of Theorem 5.7.

The following diagram summarizes the results mentioned in this subsection; here “c.s.”
stands for “complete section”.

∄ invariant
probability
measure

ks
[Nad91]

+3

x
11.11

#+

?
%-

∃ traveling c.s.

5.7

for σ-compact X

%-

?

for non-

σ-compact X +3 ∃ finite generator

∃ locally finitely traveling c.s.
6.5 +3

KS

∃ 32-generator

KS

∃ locally weakly wandering c.s.

x[EHN93]
��

7.5 +3

KS

∃ 4-generator

KS

∃ weakly wandering c.s.
7.2 +3

KS

∃ 3-generator

KS

1.I. Separating smooth-many sets and maps to the aperiodic part of the shift
action. In the proofs of the dichotomy theorems mentioned above (9.3 and 9.5), we needed
to apply the following result to the equivalence relation E of being in the same component
of the ergodic decomposition; we mention it here as it may be of interest on its on.

Theorem 8.12. Let X be an aperiodic Borel G-space and let E be a smooth (see Defini-
tion 8.11) G-invariant equivalence relation on X. There exists a partition P of X into 4
Borel sets such that GP separates any two E-nonequivalent points in X, i.e. for all x, y ∈X,
[x]E ≠ [y]E implies fP(x) ≠ fP(y).

The proof of this theorem in its turn uses the following result, which may also be of
independent interest.

Theorem 8.8. Any aperiodic Borel G-space admits a G-equivariant Borel map to the ape-
riodic part of the shift action G↷ 2G.

1.J. Nadkarni’s theorem. In order to explain the idea behind the proof of Theorem 5.7,
we now present an equivalent condition to the hypothesis of Question 1.13, i.e. to the
nonexistence of invariant measures. It was proved by Nadkarni in [Nad91] and it is the
analogue of Tarski’s theorem about paradoxical decompositions (see [Wag93]) for countably
additive measures.

Let X be a Borel G-space and denote the set of invariant Borel probability measures on
X by MG(X). Also, for S ⊆X, let [S]G denote the saturation of S, i.e. [S]G = ⋃g∈G gS.
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The following definition makes no reference to any invariant measure on X, yet provides
a sufficient condition for the measure of two sets to be equal (resp. ≤ or <).

Definition 1.23. Two Borel sets A,B ⊆ X are said to be equidecomposable (denoted by
A ∼ B) if there are Borel partitions {An}n∈N and {Bn}n∈N of A and B, respectively, and
{gn}n∈N ⊆ G such that gnAn = Bn. We write A ⪯ B if A ∼ B′ ⊆ B, and we write A ≺ B if
moreover [B ∖B′]G = [B]G.

The following explains the above definition.

Proposition 1.24. Let A,B ⊆X be Borel sets and µ ∈MG(X).

(a) If A ∼ B, then µ(A) = µ(B).
(b) If A ⪯ B, then µ(A) ≤ µ(B).
(c) If A ≺ B, then either µ(A) = µ(B) = 0 or µ(A) < µ(B).

Proof. The only part worth proving is (c) and to this end, let B′ ⊆ B be such that A ∼ B′

and [B ∖ B′]G = [B]G. If C ∶= B ∖ B′ is µ-null, then so is B, and hence A, because
B ⊆ [C]G = ⋃g∈G gC. On the other hand, if µ(C) > 0, then, because µ is a finite measure, we
have µ(A) = µ(B′) = µ(B) − µ(C) < µ(B). �

Definition 1.25. A Borel set A ⊆X is called compressible if A ≺ A.

In other words, A ≺ A means that there is a Borel witness to the fact that each orbit of A
is Dedekind infinite, i.e. is equinumerous to its proper subset.

It is clear from (c) of Proposition 1.24 that if a Borel set A ⊆ X is compressible, then
µ(A) = 0 for all µ ∈MG(X). In particular, if X itself is compressible then MG(X) = ∅.
Thus compressibility is an apparent obstruction to having an invariant probability measure.
It turns out that it is the only one:

Theorem 1.26 (Nadkarni, ’91). A Borel G-space X admits an invariant Borel probability
measure if and only if it is not compressible.

The proof of this first appeared in [Nad91] for G = Z and is also presented in Chapter 4 of
[BK96] for an arbitrary countable group G. Although we do not explicitly use this theorem
in our arguments, we largely use ideas from its proof.

1.K. Outline of the proof of Theorem 5.7. In our attempt to positively answer Ques-
tion 1.13, we take the non-constructive approach and try to prove the contrapositive:

No finite generator ⇒ ∃ an invariant probability measure.

When constructing an invariant measure (e.g. Haar measure), one usually needs some
notion of “largeness” so that X is “large” (e.g. having nonempty interior, being incompress-
ible). So we aim at something like this:

No 32-generator ∃ an invariant probability measure
⇘ ⇗

X is not “small” = X is “large”

In the definition of equidecomposability of sets A and B, the partitions {An}n∈N and
{Bn}n∈N belong to the Borel σ-algebra. For i ≥ 1, we define a finer notion of equidecom-
posability by restricting the Borel σ-algebra to some σ-algebra that is generated by the
G-translates of i-many Borel sets. In this case we say that A and B are i-equidecomposable
and denote by A ∼i B. In other words, A ∼i B if i-many Borel sets are enough to generate
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a G-invariant σ-algebra that is sufficiently fine to carve out partitions {An}n∈N and {Bn}n∈N
witnessing A ∼ B.

As before, we say that a set A is i-compressible if A ≺i A. Taking i-compressibility as our
notion of “smallness”, we prove the following:

No 32-generator ∃ an invariant probability measure
(1)⇘ ⇗ (2)

X is not 4-compressible

We prove the contrapositive of Step (1). More precisely, assuming i-compressibility, we
construct a 2i+1-generator by hand (see Proposition 3.13), thus obtaining:

No 25-generator ⇒ X is not 4-compressible.

Step (2) is proving an analogue of Nadkarni’s theorem for i-compressibility:

X is not 4-compressible ⇒ ∃ an invariant probability measure.

To accomplish this step, firstly, we show that i-compressibility is indeed a notion of “small-
ness”, i.e. that the set of i-compressible sets (roughly speaking) forms a σ-ideal (see Propo-
sition 2.19). The difficulty here is to prevent i from growing when taking unions.

Secondly, we assume that X is not 4-compressible and give a construction of a measure
(see Section 4) reminiscent of the one in the proof of Nadkarni’s theorem or the existence of
Haar measure. But unfortunately, our proof only yields a family of finitely additive invariant
probability measures because here we cannot prevent i from growing when taking countable
unions. However, with the additional assumption that X is σ-compact, we are able to
concoct a countably additive invariant probability measure out of this family of finitely
additive measures, thus obtaining Theorem 5.7.

1.L. Open questions. Here are some open questions that arose in this research. Let X
denote a Borel G-space.

(A) Is X being compressible equivalent to X being i-compressible for some i ≥ 1?
(B) Does the existence of a Borel traveling complete section imply the existence of a Borel

locally finitely traveling complete section?
(C) Can we get a 2-generator instead of a 32-generator in Theorem 5.7?

A positive answer to any of Questions (A) and (B) would imply a positive answer to
Question 1.13 since (A) is just a rephrasing of Question 1.13 because of Corollary 3.18, and
for (B), it follows from Proposition 3.5 and Corollary 6.5.
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2. The theory of i-compressibility

Throughout this section, let X be a Borel G-space and let EG denote the orbit equivalence
relation on X induced by the action of G. For a set A ⊆ X and G-invariant set P ⊆ X, put
AP ∶= A ∩ P .

For an equivalence relation E on X and A ⊆X, let [A]E denote the saturation of A with
respect to E, i.e. [A]E = {x ∈ X ∶ ∃y ∈ A(xEy)}. In case E = EG, we use [A]G instead of
[A]EG

.
Let B denote the (proper) class of all Borel subsets of standard Borel spaces, i.e.

B = {B ∶ B is a Borel subset of some standard Borel space X}.

Also, let Γ be a class σ-algebra of subsets of standard Borel spaces containing B and closed
under Borel preimages, i.e. if X,Y are standard Borel spaces and f ∶X → Y is a Borel map,
then for a subset A ⊆ Y , if A ∈ Γ then f−1(A) is also in Γ. For example, Γ = B, σ(Σ1

1),
universally measurable sets.

For a standard Borel space X, let Γ(X) denote the set of all subsets of X that belong to
Γ. In particular, B(X) denotes the set of all Borel subsets of X.

2.A. The notion of I-equidecomposability. A countable partition of X is called Borel
if all the sets in it are Borel. For a finite Borel partition I = {Ai ∶ i < k} of X, let FI denote
the equivalence relation of not being separated by GI ∶= {gAi ∶ g ∈ G, i < k}, more precisely,
∀x, y ∈X,

xFIy⇔ fI(x) = fI(y),
where fI is the symbolic representation map for (X,G,I) defined above. Note that if I is a
generator, then FI is just the equality relation.

For A ⊆X, put
Γ(X)⇂A= {A′ ⊆ A ∶ ∃B ∈ Γ(X) (A′ = B ∩A)}.

Also, for an equivalence relation E on X and A,B ⊆X, say that A is E-invariant relative to
B or just E ⇂B-invariant if [A]E ∩B = A ∩B.

Definition 2.1 (I-equidecomposability). Let A,B ⊆X, and I be a finite Borel partition of
X. A and B are said to be equidecomposable with Γ pieces (denote by A ∼Γ B) if there are
{gn}n∈N ⊆ G and partitions {An}n∈N and {Bn}n∈N of A and B, respectively, such that for all
n ∈ N

● gnAn = Bn,
● An ∈ Γ(X)⇂A and Bn ∈ Γ(X)⇂B.

If moreover,

● An and Bn are FI-invariant relative to A and B, respectively,

then we will say that A and B are I-equidecomposable with Γ pieces and denote it by A ∼Γ
I B.

If Γ =B, we will not mention Γ and will just write ∼ and ∼I.

Note that for any finite Borel partition I of X and Borel sets A,B ⊆ X, A and B are
I-equidecomposable if and only if fI(A) and fI(B) are equidecomposable (although the
images of Borel sets under fI are analytic, they are Borel relative to fI(X) due to the Luzin
Separation Theorem for analytic sets, see [Kec95, 14.7]). Also note that if I is a generator,
then ∼I coincides with ∼.

Observation 2.2. Below let I,I0,I1 denote finite Borel partitions of X, and A,B,C ∈ Γ(X).
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(a) (Quasi-transitivity) If A ∼Γ
I0 B ∼Γ

I1 C, then A ∼Γ
I C with I = I0 ∨ I1 (the least common

refinement of I0 and I1).
(b) (FI-disjoint countable additivity) Let {An}n∈N,{Bn}n∈N be partitions of A and B, respec-

tively, into Γ sets such that ∀n ≠m, [An]FI ∩ [Am]FI = [Bn]FI ∩ [Bm]FI = ∅. If ∀n ∈ N,
An ∼Γ

I Bn, then A ∼Γ
I B.

If A ∼ B, then there is a Borel isomorphism φ of A onto B with φ(x)EGx for all x ∈ A;
namely φ(x) = gnx for all x ∈ An, where An, gn are as in Definition 1.23. It is easy to see
that the converse is also true, i.e. if such φ exists, then A ∼ B. In Proposition 2.5 we prove
the analogue of this for ∼Γ

I , but first we need the following lemma and definition that take
care of definability and FI-invariance, respectively.

For a Polish space Y , f ∶ X → Y is said to be Γ-measurable if the preimages of open sets
under f are in Γ. For A ∈ Γ(X) and h ∶ A→ G, define ĥ ∶ A→X by x↦ h(x)x.

Lemma 2.3. If h ∶ A → G is Γ-measurable, then the images and preimages of sets in Γ
under ĥ are in Γ.

Proof. Let B ⊆ A, C ⊆ X be in Γ. For g ∈ G, set Ag = h−1(g) and note that ĥ(B) =

⋃g∈G g(Ag ∩ B) and ĥ−1(C) = ⋃g∈G g−1(gAg ∩ C). Thus ĥ(B) and ĥ−1(C) are in Γ by the
assumptions on Γ. �

The following technical definition is needed in the proofs of Propositions 2.5 and 2.9.

Definition 2.4. For A ⊆X and a finite Borel partition I of X, we say that I is A-sensitive

or that A respects I if A is FI-invariant relative to [A]G, i.e. [A]
[A]G
FI

= A.

For example, if I is finer than {A,Ac}, then I is A-sensitive. Note that if A ∼I B and A
respects I, then so does B.

Proposition 2.5. Let A,B ∈ Γ(X) and let I be a Borel partition of X that is A-sensitive.
Then, A ∼Γ

I B if and only if there is an FI-invariant Γ-measurable map γ ∶ A→ G such that
γ̂ is a bijection between A and B. We refer to such γ as a witnessing map for A ∼Γ

I B. The
same holds if we delete “FI-invariant” and “I” from the statement.

Proof. ⇒: If {gn}n∈N, {An}n∈N and {Bn}n∈N are as in Definition 2.1, then define γ ∶ A → G
by setting γ ⇂An≡ gn.
⇐: Let γ be as in the lemma. Fixing an enumeration {gn}n∈N of G with no repetitions, put
An = γ−1(gn) and Bn = gnAn. It is clear that {An}n∈N,{Bn}n∈N are partitions of A and B,
respectively, into Γ sets. Since γ is FI-invariant, each An is FI-invariant relative to A and
hence relative to P ∶= [A]G = [B]G because A respects I. It remains to show that each Bn

is FI-invariant relative to B. To this end, let y ∈ [Bn]FI ∩B and thus there is x ∈ An such
that yFIgnx. Hence z ∶= g−1

n y FI g−1
n gnx = x and therefore z ∈ An because An is FI-invariant

relative to P . Thus y = gnz ∈ Bn. �

In the rest of the subsection we work with Γ =B.
Next we prove that I-equidecomposability can be extended to FI-invariant Borel sets.

First we need the following separation lemma for analytic sets7:

7My original argument used Π1
1 reflection principles, but it was pointed out to me by Shashi Srivastava

that one could use analytic separation instead. I chose to present this latter argument here since analytic
separation may be more transparent for non-logicians than Π1

1 reflection principles.
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Lemma 2.6 (Invariant analytic separation). Let E be an analytic equivalence relation on X.
For any disjoint family {An}n∈N of E-invariant analytic sets, there exists a disjoint family
{Bn}n∈N of E-invariant Borel sets such that An ⊆ Bn.

Proof (Vaught). We give the proof for two disjoint E-invariant analytic sets A0,A1 since this
easily implies the statement for countably many. Recursively define analytic sets Cn ⊆ X
and Borel sets Dn ⊆X such that for every n ∈ N we have

(i) A0 ⊆ Cn ⊆Dn ⊆ Cn+1 ⊆ Ac1,
(ii) Cn is E-invariant.

To do this, let C0 = A0, and, assuming that Cn is defined, define Dn,Cn+1 as follows: since
Cn and A1 are disjoint analytic sets, there is a Borel set Dn separating them (by the Luzin
separation theorem), i.e. Dn ⊇ Cn and Dn ∩A1 = ∅. Let Cn+1 = [Dn]E, and note that Cn+1

is analytic and disjoint from A1 since A1 is E-invariant and disjoint from Dn. This finishes
the construction.

Now let B = ⋃n∈NDn; hence B is Borel, contains A0 and is disjoint from A1. On the other
hand, B = ⋃n∈NCn and thus is E-invariant. �

Proposition 2.7 (FI-invariant extensions). Let I be a Borel partition of X and let A,B ⊆X
be Borel sets with [A]FI ∩ [B]FI = ∅. If A ∼I B, then there exists Borel sets A′ ⊇ A and
B′ ⊇ B such that A′,B′ are FI-invariant and A′ ∼I B′. In fact, if {gn}n∈N,{An}n∈N,{Bn}n∈N
witness A ∼I B, then there are FI-invariant Borel partitions {A′

n}n∈N,{B′
n}n∈N of A′ and B′

respectively, such that gnA′
n = B

′
n and A′

n ⊇ An (and hence B′
n ⊇ Bn).

Proof. Let {gn}n∈N,{An}n∈N,{Bn}n∈N be as in Definition 2.1 and put An = [An]FI . It is easy
to see that for n ≠m ∈ N,

(i) An ∩Am = ∅;
(ii) gnAn ∩ gmAm = ∅.

Put A = [A]FI and note that {An}n∈N is a partition of A. Although An and A are FI-
invariant, they are analytic and in general not Borel. We obtain Borel analogues of these sets
using invariant analytic separation as follows: Lemma 2.6 applied to {An}n∈N and {gnAn}n∈N
(separately), gives us sequences {Cn}n∈N and {Dn}n∈N of FI-invariant Borel sets such that
Cn ⊇ An, Dn ⊇ gnAn and Cn ∩ Cm = Dn ∩Dm = ∅ for n ≠ m. Taking A′

n = Cn ∩ g−1
n Dn, we

see that {A′
n}n∈N is a pairwise disjoint family of FI-invariant Borel sets such that A′

n ⊇ An.
Moreover, {gnA′

n}n∈N is also a pairwise disjoint family. Thus, taking B′
n = gnA′

n, we are
done. �

Lemma 2.8 (Orbit-disjoint unions). Let Ak,Bk ∈ B(X), k = 0,1, be such that [A0]G and
[A1]G are disjoint and put A = A0 ∪ A1 and B = B0 ∪ B1. If I is an A,B-sensitive finite
Borel partition of X such that Ak ∼I Bk for k = 0,1, then A ∼I B. Moreover, if γ0 ∶ A0 → G
is a Borel map witnessing A0 ∼I B0, then there exists a Borel map γ ∶ A → G extending γ0

that witnesses A ∼I B.

Proof. First assume without loss of generality that X = [A]G (= [B]G) since the statement
of the lemma is relative to [A]G. Thus A,B are FI-invariant.

Applying Proposition 2.7 to A0 ∼I B0, we get FI-invariant A′
0 ⊇ A0,B′

0 ⊇ B0 such that
A′ ∼I B′. Moreover, by the second part of the same lemma, if γ0 ∶ A0 → G is a witnessing
map for A0 ∼I B0, then there is a witnessing map δ ∶ A′

0 → G for A′ ∼I B′ extending
γ0. Put C = A′

0 ∩ A and note that C is FI-invariant since so are A′
0 and A. Finally, put
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A0 = {x ∈ C ∶ C[x]G = A[x]G ∧ δ̂(C[x]G) = B[x]G} and note that A0 ⊇ A0 since δ ⊇ γ0 and
[A0]G ∩ [A1]G = ∅.

Claim. A0 is FI-invariant.

Proof of Claim. First note that for any FI-invariant D ⊆X and z ∈X, [D[z]G]FI =D
[[z]F

I
]G .

Furthermore, if D ⊆ C, then [δ̂(D)]FI = δ̂([D]FI) since δ̂ and its inverse map FI-invariant
sets to FI-invariant sets.

Now take x ∈ A0 and let Q = [[x]FI]G. Since A,B,C are FI-invariant, CQ = [C[x]G]FI =
[A[x]G]FI = AQ. Furthermore, δ̂(CQ) = δ̂([C[x]G]FI) = [δ̂(C[x]G)]FI = [B[x]G]FI = BQ. Thus,

∀y ∈ [x]FI , C[y]G = A[y]G and δ̂(C[y]G) = B[y]G ; hence [x]FI ⊆ A0. ⊣

PutA1 = A∖A0, α0 = δ⇂A0
, α1 = γ1 ⇂A1

, where γ1 is a witnessing map forA1 ∼I B1. It is clear

from the definition of A0 that A0 is EG-invariant relative to A and hence [A0]G ∩ [A1]G = ∅.
Thus, for k = 0,1, it follows that αk witnesses Ak ∼I Bk, where Bk = α̂k(Ak). Furthermore,

it is clear that B[Ak]G = Bk and, since [A0]G∪ [A1]G =X, B0∪B1 = B. Now since Ak are FI-
invariant, γ = α0 ∪ α1 is FI-invariant and hence witnesses A ∼I B. Finally, α0 ⇂A0= δ ⇂A0= γ0

and hence α0 ⊇ γ0. �

Proposition 2.9 (Orbit-disjoint countable unions). For k ∈ N, let Ak,Bk ∈ B(X) be such
that [Ak]G are disjoint and put A = ⋃k∈NAk, B = ⋃k∈NBk. Suppose that I is an A,B-sensitive
finite Borel partition of X such that Ak ∼I Bk for all k. Then A ∼I B.

Proof. We recursively apply Lemma 2.8 as follows. Put An = ⋃k≤nAk and Bn = ⋃k≤nBk.
Inductively define Borel maps γn ∶ ⋃k≤nAk → G such that γn is a witnessing map for An ∼I Bn

and γn ⊑ γn+1. Let γ0 be a witnessing map for A0 ∼I B0. Assume γn is defined. Then γn+1

is provided by Lemma 2.8 applied to An and An+1 with γn as a witness for An ∼I Bn. Thus
γn ⊑ γn+1 and γn+1 witnesses An+1 ∼I Bn+1.

Now it just remains to show that γ ∶= ⋃n∈N γn is FI-invariant since then it follows that γ
witnesses A ∼I B. Let x, y ∈ A be FI-equivalent. Then there is n such that x, y ∈ An. By
induction on n, γn is FI-invariant and, since γ ⇂An

= γn, γ(x) = γ(y). �

Corollary 2.10 (Finite quasi-additivity). For k = 0,1, let Ak,Bk ∈ B(X) be such that
A0 ∩A1 = B0 ∩B1 = ∅ and put A = A0 ∪A1, B = B0 ∪B1. Let Ik be an Ak,Bk-sensitive finite
Borel partition of X. If A0 ∼I0 B0 and A1 ∼I1 B1, then A ∼I0∨I1 B.

Proof. Put I = I0 ∨ I1, P = [A0]G ∩ [A1]G, Q = [A0]G ∖ [A1]G and R = [A1]G ∖ [A0]G. Then
APk ,B

P
k respect I, and thus [A0]PFI ∩ [A1]PFI = ∅, [B0]PFI ∩ [B1]PFI = ∅. Hence AP ∼I BP since

the sets that are FI-invariant relative to APk are also FI-invariant relative to AP , and the
same is true for BP

k and BP . Also, AQ ∼I BQ and AR ∼I BR because AQ = A0, BQ = B0,
AR = A1, BR = B1. Now since P,Q,R are pairwise disjoint, it follows from Proposition 2.9
that A ∼I B. �

2.B. The notion of i-compressibility. For a finite collection F of subsets of X, let ⟨F⟩
denote the partition of X generated by F .

Definition 2.11 (i-equidecomposability). For i ≥ 1, A,B ⊆ X, we say that A and B are
i-equidecomposable with Γ pieces (write A ∼Γ

i B) if there is an A-sensitive partition I of X
generated by i Borel sets such that A ∼Γ

I B (in particular, I must also be B-sensitive). For a
collection F of Borel sets, we say that F witnesses A ∼Γ

i B if ∣F ∣ = i, I ∶= ⟨F⟩ is A-sensitive
and A ∼Γ

I B.
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Remark 2.12. In the above definition, it might seem more natural to have i be the cardi-
nality of the partition I instead of the cardinality of the collection F generating I. However,
our definition above of i-equidecomposability is needed in order to show that the collection
Ci defined below forms a σ-ideal. More precisely, the presence of F is needed in the definition
of i∗-compressibility, which ensures that the partition I in the proof of Proposition 2.19 is
B-sensitive.

For a family F of subsets of X, let σG(F) denote the σ-algebra generated by GF .

Remark 2.13. S lawomir Solecki pointed out that for i ≥ 1 and Borel sets A,B ⊆X, A ∼i B
if and only if A ∼ B and the partitions {An}n∈N, {Bn}n∈N witnessing the equidecomposability
of A and B can be taken from a σ-algebra generated by the G-translates of i-many Borel
sets. More precisely, A ∼i B if and only if there are a family F of i-many Borel sets,
a sequence {gn}n∈N ⊆ G, and partitions {An}n∈N and {Bn}n∈N of A and B, respectively,
such that An,Bn ∈ σG(F) and gnAn = Bn. Thus, i-equidecomposability is obtained from
equidecomposability by restricting the Borel σ-algebra to some σ-algebra generated by the
G-translates of i-many Borel sets. Finally, note that every instance of ∼i uses a (potentially)
different σ-algebra.

For i ≥ 1, A,B ⊆ X, we write A ⪯Γ
i B if there is a Γ set B′ ⊆ B such that A ∼Γ

i B
′. If

moreover [A ∖B]G = [A]G, then we write A ≺Γ
i B. If Γ =B, we simply write ∼i,⪯i,≺i.

Definition 2.14 (i-compressibility). For i ∈ N, A ⊆X, we say that A is i-compressible with
Γ pieces if A ≺Γ

i A.

Unless specified otherwise, we will be working with Γ = B, in which case we simply say
i-compressible.

For a collection of sets F and a G-invariant set P , set FP = {AP ∶ A ∈ F}. We will use the
following observations without mentioning.

Observation 2.15. Let i, j ≥ 2, A,A′,B,B′,C ∈ B. Let P ⊆ [A]G denote a G-invariant
Borel set and F ,F0,F1 denote finite collections of Borel sets.

(a) If A ∼i B then AP ∼i BP .
(b) If F witnesses A ∼i B, then so does F [A]G.
(c) If A ∼i B ∼j C, then A ∼(i+j) C. In fact, F0 and F1 witness A ∼i B and B ∼j C,

respectively, then F = F0 ∪F1 witnesses A ∼(i+j) C.
(d) If A ⪯i B ⪯j C, then A ⪯(i+j) C. If one of the first two ⪯ is ≺ then A ≺(i+j) C.
(e) If A ∼i B and A′ ∼j B′ with A ∩A′ = B ∩B′ = ∅, then A ∪A′ ∼(i+j) B ∪B′.

Proof. Part (e) follows from Corollary 2.10, and the rest follows directly from the definition
of i-equidecomposability and Observation 2.2. �

Lemma 2.16. If a Borel set A ⊆ X is i-compressible, then so is [A]G. In fact, if F is a
finite collection of Borel sets witnessing the i-compressibility of A, then it also witnesses that
of [A]G.

Proof. Let B ⊆ A be a Borel set such that [A ∖B]G = [A]G and A ∼i B. Furthermore, let I
be an A,B-sensitive partition generated by a collection F of i Borel sets such that A ∼I B.
Let γ ∶ A → G be a witnessing map for A ∼I B. Put A′ = [A]G, B′ = B ∪ (A′ ∖A) and note
that A′,B′ respect I. Define γ′ ∶ A′ → G by setting γ′ ⇂A′∖A= id ⇂A′∖A and γ′ ⇂A= γ. Since
A′ respects I and id ⇂A′∖A, γ are FI-invariant, γ′ is FI-invariant and thus clearly witnesses
A′ ∼I B′. �
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The following is a technical refinement of the definition of i-compressibility that is (again)
necessary for Ci, defined below, to be a σ-ideal.

Definition 2.17 (i∗-compressibility). For i ≥ 1, we say that a Borel set A is i∗-compressible
if there is a Borel set B ⊆ A such that [A ∖ B]G = [A]G =∶ P , A ∼i B, and the latter is
witnessed by a collection F of Borel sets such that B ∈ FP .

Finally, for i ≥ 1, put

Ci = {A ⊆X ∶ there is a G-invariant Borel set P ⊇ A such that P is i∗-compressible}.

Lemma 2.18. Let i ≥ 1 and A ⊆X be Borel. If A ≺i A, then A ∈ Ci+1.

Proof. Setting P = [A]G and applying Lemma 2.16, we get that P ≺i P , i.e. there is B ⊆ P
such that [P ∖B]G = P and P ∼i B. Let F be a collection of Borel sets witnessing the latter
fact. Then F ′ = F ∪ {B} witnesses P ∼(i+1) B and contains B. �

Proposition 2.19. For all i ≥ 1, Ci is a σ-ideal.

Proof. We only need to show that Ci is closed under countable unions. For this it is enough
to show that if An ∈B(X) are i∗-compressible G-invariant Borel sets, then so is A ∶= ⋃n∈NAn.

We may assume that An are pairwise disjoint since we could replace each An by An ∖
(⋃k<nAk). Let Bn ⊆ An be a Borel set and Fn = {F n

k }k<i be a collection of Borel sets with
(F n

0 )An = Bn such that Fn witnesses An ∼i Bn and [An ∖ Bn]G = An. Using part (b) of
Observation 2.15, we may assume that FAn

n = Fn; in particular, F n
0 = Bn.

Put B = ⋃n∈NBn and Fk = ⋃n∈NF n
k , ∀k < i; note that F0 = B. Set F = {Fk}k<i and I = ⟨F⟩.

Since B ∈ F and A is G-invariant, I is A,B-sensitive. Furthermore, since FAn = Fn, An ∼I Bn

for all n ∈ N. Thus, by Proposition 2.9, A ∼I B and hence A is i∗-compressible. �

3. Traveling sets and finite generators

Throughout this section, we again let X be a Borel G-space and Γ be a σ-algebra of
subsets of standard Borel spaces as in the previous section.

3.A. Traveling and i-traveling sets.

Definition 3.1. Let A ∈ Γ(X).

● We call A a traveling set with Γ pieces if there exists pairwise disjoint sets {An}n∈N
in Γ(X) such that A0 = A and A ∼Γ An, ∀n ∈ N.

● For a finite Borel partition I, we say that A is I-traveling with Γ pieces if A respects
I and the above condition holds with ∼Γ replaced by ∼Γ

I .
● For i ≥ 1, we say that A is i-traveling if it is I-traveling for some A-sensitive partition
I generated by a collection of i Borel sets.

Definition 3.2. For a set A ⊆ X, a function γ ∶ A → GN is called a travel guide for A if
∀x ∈ A,γ(x)(0) = 1G and ∀(x,n) ≠ (y,m) ∈ A ×N, γ(x)(n)x ≠ γ(y)(m)y.

For A ∈ Γ(X), a Γ-measurable map γ ∶ A → GN and n ∈ N, set γn ∶= γ(⋅)(n) ∶ A → G and
note that γn is also Γ-measurable.

Observation 3.3. Suppose A ∈ Γ(X) and I is an A-sensitive finite Borel partition of X.
Then A is I-traveling with Γ pieces if and only if it has a Γ-measurable FI-invariant travel
guide.
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Proof. Follows from definitions and Proposition 2.5. �

Now we establish the connection between compressibility and traveling sets.

Lemma 3.4. Let I be a finite Borel partition of X, P ∈ Γ(X) be a Borel G-invariant set and
let A,B be Γ subsets of P . If P ∼Γ

I B, then P ∖B is I-traveling with Γ pieces. Conversely,
if A is I-traveling with Γ pieces, then P ∼Γ

I (P ∖A). The same is true if we replace ∼Γ
I and

“I-traveling” with ∼Γ and “traveling”, respectively.

Proof. For the first statement, let γ ∶ P → G be a witnessing map for P ∼Γ
I B. Put A′ = P ∖B

and note that A′ respects I since so does P and hence B. We show that A′ is I-traveling.
Put An = (γ̂)n(A′), for each n ≥ 0. It follows from injectivity of γ̂ that the An are pairwise
disjoint. For n ∈ N, recursively define δn ∶ A′ → G as follows

{
δ0 = γ ⇂A′

δn+1 = γ ○ δ̂n
.

It follows from FI-invariance of γ that each δn is FI-invariant. It is also clear that δ̂n = (γ̂)n

and hence δn is a witnessing map for A′ ∼Γ
I An. Thus A′ is i-traveling with Γ pieces.

For the converse, assume that A is I-traveling and let {An}n∈N be as in Definition 3.1.
In particular, each An respects I and An ∼Γ

I Am, for all n,m ∈ N. Let P ′ = ⋃n∈NAn and
B′ = ⋃n≥1An. Since An ∼Γ

I An+1, part (b) of Observation 2.2 implies that P ′ ∼Γ
I B

′. Moreover,
since P ∖ P ′ ∼Γ

I P ∖ P ′, we get P ∼Γ
I (B′ ∪ (P ∖ P ′)) = P ∖A. �

For a G-invariant set P and A ⊆ P , we say that A is a complete section for P if [A]G = P .
The above lemma immediately implies the following.

Proposition 3.5. Let P ∈ Γ(X) be G-invariant and i ≥ 1. P is i-compressible with Γ pieces
if and only if there exists a complete section for P that is i-traveling with Γ pieces. The same
is true with “i-compressible” and “i-traveling” replaced by “compressible” and “traveling”.

We need the following lemma in the proofs of Propositions 3.7 and 3.8.

Lemma 3.6. Suppose A ⊆ X is an invariant analytic set that does not admit an invariant
Borel probability measure. Then there is an invariant Borel set A′ ⊇ A that still does not
admit an invariant Borel probability measure.

Proof. LetM denote the standard Borel space of G-invariant Borel probability measures on
X (see [Kec95, Section 17]). Let Φ ⊆ Pow(X) be the following predicate:

Φ(W )⇔ ∀µ ∈M(µ(W ) = 0).

Claim. There is a Borel set B ⊇ A with Φ(B).

Proof of Claim. By the dual form of the First Reflection Theorem for Π1
1 (see [Kec95, the

discussion following 35.10]), it is enough to show that Φ is Π1
1 on Σ1

1. To this end, let Y be
a Polish space and D ⊆ Y ×X be analytic. Then, for any n ∈ N, the set

Hn = {(µ, y) ∈M × Y ∶ µ(Dy) >
1

n
},

is analytic by a theorem of Kondô–Tugué (see [Kec95, 29.26]), and hence so are the sets
H ′
n ∶= projY (Hn) and H ∶= ⋃n∈NH ′

n. Finally, note that

{y ∈ Y ∶ Φ(Ay)} = {y ∈ Y ∶ ∃µ ∈M∃n ∈ N(µ(Ay) >
1

n
)}c =Hc,
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and so {y ∈ Y ∶ Φ(Ay)} is Π1
1. ⊣

Now put A′ = (B)G, where (B)G = {x ∈ B ∶ [x]G ⊆ B}. Clearly, A′ is an invariant Borel
set, A′ ⊇ A, and Φ(A′) since A′ ⊆ B and Φ(B). �

Proposition 3.7. Let X be a Borel G-space. The following are equivalent:

(1) X is compressible with universally measurable pieces;
(2) There is a universally measurable complete section that is a traveling set with universally

measurable pieces;
(3) There is no G-invariant Borel probability measure on X;
(4) X is compressible with Borel pieces;
(5) There is a Borel complete section that is a traveling set with Borel pieces.

Proof. Equivalence of (1) and (2) as well as (4) and (5) is asserted in Proposition 3.5, (4)⇒(1)
is trivial, and (3)⇒(4) follows from Nadkarni’s theorem (see 1.26). It remains to show
(1)⇒(3). To this end, suppose X ∼Γ B, where Bc =X ∖B is a complete section and Γ is the
class of universally measurable sets. If there was a G-invariant Borel probability measure
µ on X, then µ(X) = µ(B) and hence µ(Bc) = 0. But since Bc is a complete section,
X = ⋃g∈G gBc, and thus µ(X) = 0, a contradiction. �

Now we prove an analogue of this for i-compressibility.

Proposition 3.8. Let X be a Borel G-space. For i ≥ 1, the following are equivalent:

(1) X is i-compressible with universally measurable pieces;
(2) There is a universally measurable complete section that is an i-traveling set with univer-

sally measurable pieces;
(3) There is a partition I of X generated by i Borel sets such that Y = fI(X) ⊆ ∣I ∣G does

not admit a G-invariant Borel probability measure;
(4) X is i-compressible with Borel pieces;
(5) There is a Borel complete section that is an i-traveling set with Borel pieces.

Proof. Equivalence of (1) and (2) as well as (4) and (5) is asserted in Proposition 3.5 and
(4)⇒(1) is trivial. It remains to show (1)⇒(3)⇒(5).
(1)⇒(3): Suppose X ∼Γ

I B, where Bc = X ∖ B is a complete section, I is a partition of
X generated by i Borel sets, and Γ denotes the class of universally measurable sets. Let
γ ∶ X → G be a witnessing map for X ∼Γ

i B. By the Jankov-von Neumann uniformization
theorem (see [Kec95, 18.1]), fI has a σ(Σ1

1)-measurable (hence universally measurable) right
inverse h ∶ Y → X. Define δ ∶ Y → G by δ(y) = γ(h(y)) and note that δ is universally

measurable being a composition of such functions. Letting B′ = δ̂(Y ), it is straightforward

to check that δ̂ ○ fI = fI ○ γ̂ and thus B′ = fI(γ̂(X)) = fI(B). Now it follows that δ is
a witnessing map for Y ∼Γ B′ and hence Y is compressible with universally measurable
pieces. Finally, (1)⇒(3) of Proposition 3.7 implies that Y does not admit an invariant Borel
probability measure.
(3)⇒(5): Assume Y is as in (3). Then by Lemma 3.6, there is a Borel G-invariant Y ′ ⊇ Y
that does not admit a G-invariant Borel probability measure. Viewing Y ′ as a Borel G-space,
we apply (3)⇒(4) of Proposition 3.7 and get that Y ′ is compressible with Borel pieces; thus
there is a Borel B′ ⊆ Y ′ with [Y ′ ∖ B′]G = Y ′ such that Y ′ ∼ B′. Let δ ∶ Y ′ → G be a
witnessing map for Y ′ ∼ B′. Put B = fI

−1(B′) and γ = δ ○ fI . By definition, γ is FI-
invariant. In fact, it is straightforward to check that γ is a witnessing map for X ∼I B and
[X∖B]G = [fI

−1(Y ∖B′)]G = fI
−1([Y ∖B′]G) = fI

−1(Y ) =X. Hence X is I-compressible. �
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We now give an example of a 1-traveling set. First we need some definitions.

Definition 3.9. Let X be a Borel G-space. A set A ⊆X is called

● aperiodic if it intersects every orbit in either 0 or infinitely many points;
● a partial transversal if it intersects every orbit in at most one point;
● a transversal if it intersects every orbit in exactly one point;
● smooth if there is a Borel partial transversal T ⊆ A such that [T ]G = [A]G.

Finally, the action G ↷ X is called smooth if X is a smooth set, i.e. admits a Borel
transversal.

Proposition 3.10. Let X be an aperiodic Borel G-space and T ⊆ X be Borel. If T is a
partial transversal, then T is ⟨T ⟩-traveling.

Proof. Let G = {gn}n∈N with g0 = 1G. For each n ∈ N, define n̄ ∶ X → N and γn ∶ T → G
recursively in n as follows:

{
n̄(x) = the least k such that gkx ∉ {γ̂i(x) ∶ i < n}
γn(x) = gn̄(x)

.

Clearly, n̄ and γn are well-defined and Borel. Define γ ∶ T → GN by setting γ(⋅)(n) = γn. It
follows from the definitions that γ is a Borel travel guide for T and hence, T is a traveling set.
It remains to show that γ is FI-invariant, where I = ⟨T ⟩. For this it is enough to show that n̄
is FI-invariant, which we do by induction on n. Since it trivially holds for n = 0, we assume
it is true for all 0 ≤ k < n and show it for n. To this end, suppose x, y ∈ T with xFIy, and
assume for contradiction that m ∶= n̄(x) < n̄(y). Thus it follows that gmy = γ̂k(y) ∈ γ̂k(T ),
for some k < n. By the induction hypothesis, γ̂k(T ) is FI-invariant and hence, gmx ∈ γ̂k(T ),
contradicting the definition of n̄(x). �

Corollary 3.11. Let X be an aperiodic Borel G-space. If a Borel set A ⊆X is smooth, then
A ∈ C1.

Proof. Let P = [A]G and let T be a Borel partial transversal with [T ]G = P . By Proposi-
tion 3.10, T is I-traveling, where I = ⟨T ⟩. Hence, P ∼I P ∖ T , by Lemma 3.4. This implies
that P is 1∗-compressible since I = ⟨T c⟩ and P ∖ T ∈ {T c}P . �

3.B. Constructing finite generators using i-traveling sets.

Lemma 3.12. Let A ∈ B(X) be a complete section and I be an A-sensitive finite Borel
partition of X. If A is I-traveling (with Borel pieces), then there is a Borel 2∣I ∣-generator.
If moreover A ∈ I, then there is a Borel (2∣I ∣ − 1)-generator.

Proof. Let γ be an FI-invariant Borel travel guide for A. Fix a countable family {Un}n∈N
generating the Borel structure of X and let B = ⋃n≥1 γ̂n(A ∩ Un). By Lemma 2.3, each γ̂n
maps Borel sets to Borel sets and hence B is Borel. Set J = ⟨B⟩ , P = I ∨ J and note that
∣P ∣ ≤ 2∣I ∣. A and B are disjoint since {γ̂n(A)}n∈N is a collection of pairwise disjoint sets and
γ̂0(A) = A; thus if A ∈ I, ∣P ∣ ≤ 1+ 2(∣I ∣− 1) = 2∣I ∣− 1. We show that P is a generator, that is
GP separates points in X.

Let x ≠ y ∈ X and assume they are not separated by GI, thus xFIy. We show that GJ
separates x and y. Because A is a complete section, multiplying x by an appropriate group
element, we may assume that x ∈ A. Since A respects I, A is FI-invariant and thus y ∈ A.
Also, because γ is FI-invariant, γn(x) = γn(y), ∀n ∈ N. Let n ≥ 1 be such that x ∈ Un but
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y ∉ Un. Put g = γn(x)(= γn(y)). Then gx = γ̂n(x) ∈ γ̂n(A∩Un) while gy = γ̂n(y) ∉ γ̂n(A∩Un).
Hence, gx ∈ B and gy ∉ B because γm(A) ∩ γn(A) = ∅ for all m ≠ n and gy = γ̂n(y) ∈ γ̂n(A).
Thus GJ separates x and y. �

Now Proposition 3.8 and Lemma 3.12 together imply the following.

Proposition 3.13. Let X be a Borel G-space and i ≥ 1. If X is i-compressible then there is
a Borel 2i+1-generator.

Proof. By Proposition 3.8, there exists a Borel i-traveling complete section A. Let I witness
A being i-traveling and thus, by Lemma 3.12, there is a 2∣I ∣ ≤ 2 ⋅ 2i = 2i+1-generator. �

Example 3.14. For 2 ≤ n ≤∞, let Fn denote the free group on n generators and let X be the
boundary of Fn, i.e. the set of infinite reduced words. Clearly, the product topology makes
X a Polish space and Fn acts continuously on X by left concatenation and cancellation. We
show that X is 1-compressible and thus admits a Borel 22 = 4-generator by Proposition 3.13.
To this end, let a, b be two of the n generators of Fn and let Xa be the set of all words in
X that start with a. Then X = (Xa−1 ∪X

c
a−1

) ∼I Y , where Y = bXa−1 ∪ aX
c
a−1

and I⟨Xa−1⟩.
Hence X ∼1 Y . Since X ∖ Y ⊇Xa−1 , [X ∖ Y ]Fn =X and thus X is 1-compressible.

Now we obtain a sufficient condition for the existence of an embedding into a finite
Bernoulli shift.

Corollary 3.15. Let X be a Borel G-space and k ∈ N. If there exists a G-equivariant Borel
map f ∶X → kG such that Y = f(X) does not admit a G-invariant Borel probability measure,
then there is a G-equivariant Borel embedding of X into (2k)G.

Proof. Let I = If and hence f = fI . By (3)⇒(5) of Proposition 3.8 (or rather the proof
of it), X admits a Borel I-traveling complete section. Thus by Lemma 3.12, X admits a
2∣I ∣ = 2k-generator and hence, there is a G-equivariant Borel embedding of X into (2k)G. �

Lemma 3.16. Let I be a partition of X into n Borel sets. Then I is generated by k =
⌈log2(n)⌉ Borel sets.

Proof. Since 2k ≥ n, we can index I by the set 2k of all k-tuples of {0,1}, i.e. I = {Aσ}σ∈2k .
For all i < k, put

Bi = ⋃
σ∈2k∧σ(i)=1

Aσ.

Now it is clear that for all σ ∈ 2k, Aσ = ⋂i<kB
σ(i)
i , where B

σ(i)
i is equal to Bi if σ(i) = 1, and

equal to Bc
i , otherwise. Thus I = ⟨Bi ∶ i < k⟩. �

Proposition 3.17. If X is compressible and there is a Borel n-generator, then X is ⌈log2(n)⌉-
compressible.

Proof. Let I be an n-generator and hence, by Lemma 3.16, I is generated by ⌈log2(n)⌉ Borel
sets. Since GI separates points in X, each FI-class is a singleton and hence X ≺ X implies
X ≺I X. �

From Propositions 3.13 and 3.17 we immediately get the following corollary, which justifies
the use of i-compressibility in studying Question 1.13.

Corollary 3.18. Let X be a Borel G-space that is compressible (equivalently, does not admit
an invariant Borel probability measure). X admits a finite generator if and only if X is i-
compressible for some i ≥ 1.
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4. Finitely additive invariant measures and i-compressibility

This section is mainly devoted to the following theorem, together its corollaries and proof.

Theorem 4.1. Let X be a Borel G-space. If X is aperiodic, then there exists a function
m ∶B(X) ×X → [0,1] satisfying the following properties for all A,B ∈B(X):

(a) m(A, ⋅) is Borel;
(b) m(X,x) = 1, ∀x ∈X;
(c) If A ⊆ B, then m(A,x) ≤m(B,x), ∀x ∈X;
(d) m(A,x) = 0 off [A]G;
(e) m(A,x) > 0 on [A]G modulo C4;
(f) m(A,x) =m(gA,x), for all g ∈ G, x ∈X modulo C3;
(g) If A ∩B = ∅, then m(A ∪B,x) =m(A,x) +m(B,x), ∀x ∈X modulo C4.

Remark 4.2. A version of this theorem is what lies at the heart of the proof of Nadkarni’s
theorem. The conclusions of our theorem are modulo C4, which is potentially a smaller σ-
ideal than the σ-ideal of sets contained in compressible Borel sets used in Nadkarni’s version.
However, the price we pay for this is that part (g) asserts only finite additivity instead of
countable additivity asserted by Nadkarni’s version.

Before proceeding with the proof of this theorem, we draw a couple of corollaries. Theo-
rem 4.1 will only be used via Corollary 4.4.

Definition 4.3. Let X be a Borel G-space. B ⊆B(X) is called a Boolean G-algebra, if it is
a Boolean algebra, i.e. is closed under finite unions and complements, and is closed under
the G-action, i.e. GB = B.

Corollary 4.4. Let X be a Borel G-space and let B ⊆ B(X) be a countable Boolean G-
algebra. For any A ∈ B with A ∉ C4, there exists a G-invariant finitely additive probability
measure µ on B with µ(A) > 0. Moreover, µ can be taken such that there is x ∈ A such that
∀B ∈ B with B ∩ [x]G = ∅, µ(B) = 0.

Proof. Let A ∈ B be such that A ∉ C4. We may assume that X = [A]G by setting the (to be
constructed) measure to be 0 outside [A]G.

If X is not aperiodic, then by assigning equal point masses to the points of a finite orbit,
we will have a probability measure on all of B(X), so assume X is aperiodic.

Since C4 is a σ-ideal and B is countable, Theorem 4.1 implies that there is a P ∈ C4

such that (a)-(g) of the same theorem hold on X ∖ P for all A,B ∈ B. Since A ∉ C4, there
exists xA ∈ A ∖ P . Hence, letting µ(B) = m(B,xA) for all B ∈ B, conditions (b),(f) and (g)
imply that µ is a G-invariant finitely additive probability measure on B. Moreover, since
xA ∈ [A]G ∖ P , µ(A) = m(A,xA) > 0. Finally, the last assertion follows from condition
(d). �

Corollary 4.5. Let X be a Borel G-space. For every Borel set A ⊆ X with A ∉ C4, there
exists a G-invariant finitely additive Borel probability measure µ (defined on all Borel sets)
with µ(A) > 0.

Proof. The statement follows from Corollary 4.4 and a standard application of the Compact-
ness Theorem of propositional logic. Here are the details.

We fix the following set of propositional variables

P = {PA,r ∶ A ∈B(X), r ∈ [0,1]},
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with the following interpretation in mind:

PA,r⇔ “the measure of A is ≥ r”.

Define the theory T as the following set of sentences: for each A,B ∈B(X), r, s ∈ [0,1] and
g ∈ G,

(i) “PA,0”∈ T ;
(ii) if r > 0, then “¬P∅,r”∈ T ;
(iii) if s ≥ r, then “PA,s → PA,r”∈ T ;
(iv) if A ∩B = ∅, then “(PA,r ∧ PB,s)→ PA∪B,r+s”, “(¬PA,r ∧ ¬PB,s)→ ¬PA∪B,r+s”∈ T ;
(v) “PX,1”∈ T ;
(vi) “PA,r → PgA,r”∈ T .

If there is an assignment of the variables in P satisfying T , then for each A ∈ B(X), we
can define

µ(A) = sup{r ∈ [0,1] ∶ PA,r}.

Note that due to (i), µ is well defined for all A ∈ B(X). In fact, it is straightforward to
check that µ is a finitely additive G-invariant probability measure. Thus, we only need to
show that T is satisfiable, for which it is enough to check that T is finitely satisfiable, by the
Compactness Theorem of propositional logic (or by Tychonoff’s theorem).

Let T0 ⊆ T be finite and let P0 be the set of propositional variables that appear in the
sentences in T0. Let B denote the Boolean G-algebra generated by the sets that appear in
the indices of the variables in P0. By Corollary 4.4, there is a finitely additive G-invariant
probability measure µ defined on B. Consider the following assignment of the variables in
P0: for all PA,r ∈ P0,

PA,r ∶⇔ µ(A) ≥ r.

It is straightforward to check that this assignment satisfies T0, and hence, T is finitely
satisfiable. �

We now start working towards the proof of Theorem 4.1, following the general outline of
Nadkarni’s proof of Theorem 1.26. The construction of m(A,x) is somewhat similar to that
of Haar measure. First, for sets A,B, we define a Borel function [A/B] ∶ X → N ∪ {−1,∞}
that basically gives the number of copies of B[x]G that fit in A[x]G when moved by group
elements (piecewise). Then we define a decreasing sequence of complete sections (called a
fundamental sequence below), which serves as a gauge to measure the size of a given set.

Assume throughout that X is an aperiodic Borel G-space (although we only use the
aperiodicity assumption in Proposition 4.16 to assert that smooth sets are in C1).

4.A. Measuring the size of a set relative to another.

Lemma 4.6 (Comparability). ∀A,B ∈ B(X), there is a partition X = P ∪ Q into G-
invariant Borel sets such that for any A,B-sensitive finite Borel partition I of X, AP ≺I BP

and BQ ⪯I AQ.

Proof. It is enough to prove the lemma assuming X = [A]G ∩ [B]G since we can always
include [B]G ∖ [A]G in P and X ∖ [B]G in Q.

Fix an enumeration {gn}n∈N for G. We recursively construct Borel sets An,Bn,A′
n,B

′
n

as follows. Set A′
0 = A and B′

0 = B. Assuming A′
n,B

′
n are defined, set Bn = B′

n ∩ gnA
′
n,

An = g−1
n Bn, A′

n+1 = A
′
n ∖An and B′

n+1 = B
′
n ∖Bn.



24 ANUSH TSERUNYAN

It is easy to see by induction on n that for any A,B-sensitive I, An,Bn are FI-invariant
since so are A,B. Thus, setting A∗ = ⋃n∈NAn and B∗ = ⋃n∈NBn, we get that A∗ ∼I B∗ since
Bn = gnAn.

Let A′ = A ∖A∗, B′ = B ∖B∗ and set P = [B′]G, Q =X ∖ P .

Claim. [A′]G ∩ [B′]G = ∅.

Proof of Claim. Assume for contradiction that ∃x ∈ A′ and n ∈ N such that gnx ∈ B′. It is
clear that A′ = ⋂k∈NA′

k, B
′ = ⋂k∈NB′

k; in particular, x ∈ A′
n and gnx ∈ B′

n. But then gnx ∈ Bn

and x ∈ An, contradicting x ∈ A′. ⊣

Let I be an A,B-sensitive partition. Then AP = (A∗)P and hence AP ≺I BP since
(A∗)P ∼I (B∗)P ⊆ BP and [BP ∖ (B∗)P ]G = [B′]G = P = [BP ]G. Similarly, BQ = (B∗)Q and
hence BQ ⪯I AQ since (B∗)Q ∼I (A∗)Q ⊆ AQ. �

Definition 4.7 (Divisibility). Let n ≤∞, A,B,C ∈ B(X) and I be a finite Borel partition
of X.

● Write A ∼I nB ⊕C if there are Borel sets Ak ⊆ A, k < n, such that {Ak}k<n ∪ {C} is
a partition of A, each Ak is FI-invariant relative to A and Ak ∼I B.

● Write nB ⪯I A if there is C ⊆ A with A ∼I nB ⊕C, and write nB ≺I A if moreover
[C]G = [A]G.

● Write A ⪯I nB if there is a Borel partition {Ak}k<n of A such that each Ak is FI-
invariant relative to A and Ak ⪯I B. If moreover, Ak ≺I B for at least one k < n, we
write A ≺I nB.

For i ≥ 1, we use the above notation with I replaced by i if there is an A,B-sensitive partition
I generated by i sets for which the above conditions hold.

Proposition 4.8 (Euclidean decomposition). Let A,B ∈ B(X) and put R = [A]G ∩ [B]G.
There exists a partition {Pn}n≤∞ of R into G-invariant Borel sets such that for any A,B-
sensitive finite Borel partition I of X and n ≤∞, APn ∼I nBPn ⊕Cn for some Cn such that
Cn ≺I BPn, if n <∞.

Proof. We repeatedly apply Lemma 4.6. For n < ∞, recursively define Rn, Pn,An,Cn satis-
fying the following:

(i) Rn are invariant decreasing Borel sets such that nBRn ⪯I ARn for any A,B-sensitive I;
(ii) Pn = Rn ∖Rn+1;

(iii) An ⊆ Rn+1 are pairwise disjoint Borel sets such that for any A,B-sensitive I, every An
respects I and An ∼I BRn+1 ;

(iv) Cn ⊆ Pn are Borel sets such that for any A,B-sensitive I, every Cn respects I and
Cn ≺I BPn .

Set R0 = R. Given Rn, {Ak}k<n satisfying the above properties, let A′ = ARn ∖⋃k<nAk. We
apply Lemma 4.6 to A′ and BRn , and get a partition Rn = Pn∪Rn+1 such that (A′)Pn ≺I BPn

and BRn+1 ⪯I (A′)Rn+1 . Set Cn = (A′)Pn . Let An ⊆ (A′)Rn+1 be such that BRn+1 ∼I An. It is
straightforward to check (i)-(iv) are satisfied.

Now let P∞ = ⋂n∈NRn and C∞ = (A ∖ ⋃n∈NAn)P∞ . It follows from (i)-(iv) that for all
n ≤∞, {APn

k }k<n ∪ {Cn} is a partition of APn witnessing APn ∼I nB ⊕Cn, and for all n <∞,
Cn ≺ BPn . �
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For A,B ∈B(X), let {Pn}n≤∞ be as in the above proposition. Define

[A/B](x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

n if x ∈ Pn, n <∞
∞ if x ∈ P∞ or x ∈ [A]G ∖ [B]G
0 if x ∈ [B]G ∖ [A]G
−1 otherwise

.

Note that [A/B] ∶X → N ∪ {−1,∞} is a Borel function by definition.

4.B. Properties of [A/B].

Lemma 4.9 (Infinite divisibility ⇒ compressibility). Let A,B ∈ B(X) with [A]G = [B]G,
and let I be a finite Borel partition of X. If ∞B ⪯I A, then A ≺I A.

Proof. Let C ⊆ A be such that A ∼I ∞B ⊕C and let {Ak}k<∞ be as in Definition 4.7. Ak ∼I
B ∼I Ak+1 and hence Ak ∼I Ak+1. Also trivially C ∼I C. Thus, letting A′ = ⋃k<∞Ak+1 ∪ C,
we apply (b) of Observation 2.2 to A and A′, and get that A ∼I A′. Because [A ∖ A′]G =
[A0]G = [B]G = [A]G, we have A ≺I A. �

Lemma 4.10 (Ambiguity ⇒ compressibility). Let A,B ∈ B(X) and I be a finite Borel
partition of X. If nB ⪯I A ≺I nB for some n ≥ 1, then A ≺I A.

Proof. Let C ⊆ A be such that A ∼I nB ⊕ C and let {Ak}k<n be a partitions of A ∖ C
witnessing A ∼I nB ⊕ C. Also let {A′

k}k<n be witnessing A ≺I nB with A′
0 ≺I B. Since

A′
k ⪯I B ∼I Ak, A′

k ⪯I Ak, for all k < n and A′
0 ≺I A0. Note that it follows from the

hypothesis that [A]G = [B]G and hence [A0]G = [A]G since [A0]G = [B]G. Thus it follows
from (b) of Observation 2.2 that A = ⋃k<nA′

k ≺I ⋃k<nAk ⊆ A. �

Proposition 4.11. Let n ∈ N and A,A′,B,P ∈B(X), where P is invariant.

(a) [A/B] ∈ N on [B]G modulo C3.
(b) If A ⊆ A′, then [A/B] ≤ [A′/B].
(c) If [A/B] = n on P then nBP ⪯I AP ≺I (n+ 1)BP , for any finite Borel partition I that is

A,B-sensitive. In particular, nBP ⪯2 AP ≺2 (n + 1)BP by taking I = ⟨A,B⟩.
(d) For n ≥ 1, if AP ≺i nBP , then [A/B] < n on P modulo Ci+1;
(e) If AP ⊆ [B]G and nBP ⪯i AP , then [A/B] ≥ n on P modulo Ci+1.

Proof. For (a), notice that Lemmas 2.18 and 4.9 imply that P∞ ∈ C3.
For part (b), it is enough to note the following: if X = P ∪ Q and X = P ′ ∪ Q′ are the

partitions provided by Lemma 4.6 when applied to A,B and A′,B, respectively, then it
follows from the construction in the proof of that lemma that Q′ ⊇ Q.

Part (c) follows from the definition of [A/B].
For (d), let I be an A,B-sensitive partition of X generated by i Borel sets such that

AP ≺I nBP , and put Q = {x ∈ P ∶ [A/B](x) ≥ n}. By (c), nBQ ⪯I AQ. Thus, by Lemma 4.10,
AQ ≺I AQ and hence, by Lemma 2.18, [AQ]G = Q ∈ Ci+1.

For (e), let I be an A,B-sensitive partition of X generated by i Borel sets such that
nBP ⪯I AP , and put Q = {x ∈ P ∶ [A/B](x) < n}. By (c), AQ ≺I nBQ. Thus, by Lemma 4.10,
AQ ≺I AQ and hence, by Lemma 2.18, [AQ]G = Q ∈ Ci+1. �

Lemma 4.12 (Almost cancellation). For any A,B,C ∈X,

[A/B][B/C] ≤ [A/C] < ([A/B] + 1)([B/C] + 1)

on R ∶= [B]G ∩ [C]G modulo C4.
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Proof. Let I = ⟨A,B,C⟩.

[A/B][B/C] ≤ [A/C]: Fix integers i, j > 0 and let P = {x ∈X ∶ [A/B](x) = i∧[B/C](x) = j}.
Since i, j > 0, P ⊆ [A]G∩ [B]G∩ [C]G and we work in P . By (c) of Proposition 4.11, iB ⪯I A
and jC ⪯I B. Thus it follows that ijC ⪯I A and hence [A/C] ≥ ij modulo C4 by (e) of 4.11.

[A/C] < ([A/B] + 1)([B/C] + 1): By (a) of 4.11, [A/C], [A/B], [B/C] ∈ N on R modulo C3.
Fix i, j ∈ N and let Q = {x ∈ R ∶ [A/B](x) = i∧ [B/C](x) = j}. We work in Q. By (c) of 4.11,
A ≺I (i+ 1)B and B ≺I (j + 1)C. Thus A ≺I (i+ 1)(j + 1)C and hence [A/C] < (i+ 1)(j + 1)
modulo C4 by (d) of 4.11. �

Lemma 4.13 (Invariance). For A,F ∈B(X), ∀g ∈ G, [A/F ] = [gA/F ], modulo C3.

Proof. We may assume that X = [A]G ∩ [F ]G. Fix g ∈ G, n ∈ N, and put Q = {x ∈ X ∶
[gA/F ](x) = n}. We work in Q. Let I = ⟨A,F ⟩ and hence A,gA,F respect I. By (c) of
4.11, nF ⪯I gA. But clearly gA ∼I A and hence nF ⪯I A. Thus, by (e) of 4.11, [A/F ] ≥ n =
[gA/F ], modulo C3. By symmetry, [gA/F ] ≥ [A/F ] (modulo C3) and the lemma follows. �

Lemma 4.14 (Almost additivity). For any A,B,F ∈ X with A ∩B = ∅, [A/F ] + [B/F ] ≤
[A ∪B/F ] ≤ [A/F ] + [B/F ] + 1 modulo C4.

Proof. Let I = ⟨A,B,F ⟩.

[A/F ]+[B/F ] ≤ [A∪B/F ]: Fix i, j ∈ N not both 0, say i > 0, and let S = {x ∈X ∶ [A/F ](x) =
i∧ [B/F ](x) = j}. Since i > 0, S ⊆ [A]G ∩ [F ]G and we work in S. By (c) of 4.11, iF S ⪯I AS

and jF S ⪯I BS. Hence (i + j)F S ⪯I (A ∪B)S and thus, by (e) of 4.11, [A ∪B/F ] ≥ i + j,
modulo C4.

[A ∪ B/F ] ≤ [A/F ] + [B/F ] + 1: Outside [F ]G, the inequality clearly holds. Fix i, j ∈ N
and let M = {x ∈ [F ]G ∶ [A/F ](x) = i ∧ [B/F ](x) = j}. We work in M . By (c) of 4.11,
A ≺I (i + 1)F and B ≺I (j + 1)F . Thus it is clear that A ∪ B ≺I (i + j + 2)F and hence
[A ∪B/F ] < i + j + 2, modulo C4, by (d) of 4.11. �

4.C. Fundamental sequence.

Definition 4.15. A sequence {Fn}n∈N of decreasing Borel complete sections with F0 =X and
[Fn/Fn+1] ≥ 2 modulo C3 is called fundamental.

Proposition 4.16. There exists a fundamental sequence.

Proof. Take F0 = X. Given any complete Borel section F , its intersection with every orbit
is infinite modulo a smooth set (if the intersection of an orbit with a set is finite, then
we can choose an element from each such nonempty intersection in a Borel way and get a
Borel transversal). Thus, by Corollary 3.11, F is aperiodic modulo C1. Now use Lemma 8.1
(the proof of this does not use any results from the current paper, so there is no loop) to
write F = A ∪B,A ∩B = ∅, where A,B are also complete sections. Let now P,Q be as in
Lemma 4.6 for A,B, and hence AP ≺2 BP ,BQ ⪯2 AQ because we can take I = ⟨A,B⟩. Let
A′ = AP ∪BQ,B′ = BP ∪AQ. Then F = A′ ∪B′,A′ ∩B′ = ∅, A′ ⪯ B′ and A′ is also a complete
Borel section. By (e) of Proposition 4.11, [F /A′] ≥ 2 modulo C3. Iterate this process to
inductively define Fn. �
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4.D. Definition and properties of m(A,x). Fix a fundamental sequence {Fn}n∈N and for
any A ∈B(X), x ∈X, define

(4.17) m(A,x) = lim
n→∞

[A/Fn](x)

[X/Fn](x)
,

if the limit exists, and 0 otherwise. In the above fraction we define ∞
∞ = 1. We will prove in

Proposition 4.19 that this limit exists modulo C4. But first we need a lemma.

Lemma 4.18. For any A ∈B(A),

lim
n→∞[A/Fn] = {

∞ on [A]G
0 on X ∖ [A]G

, modulo C4.

Proof. The part about X ∖ [A]E is clear, so work in [A]E, i.e. assume X = [A]G. By (a) of
4.11 and Lemma 4.12, we have

∞ > [F1/A] ≥ [F1/Fn][Fn/A] ≥ 2n−1[Fn/A], modulo C4,

which holds for all n at once since C4 is a σ-ideal. Thus [Fn/A] → 0 modulo C4 and hence,
as [Fn/A] ∈ N, [Fn/A] is eventually 0, modulo C4. So if

Bk ∶= {x ∈ [A]G ∶ [F /A](x) = 0},

then Bk ↗ X, modulo C4. Now it follows from Lemma 4.6 that [A/Fk] > 0 on Bk modulo
C4. But

[A/Fk+n] ≥ [A/Fk][Fk/Fk+n] ≥ 2n[A/Fk], modulo C4,

so for every k, [A/Fn]→∞ on Bk modulo C4. Since Bk ↗X modulo C4, we have [A/Fn]→∞
on X, modulo C4. �

Proposition 4.19. For any Borel set A ⊆ X, the limit in (4.17) exists and is positive on
[A]G, modulo C4.

Proof.

Claim. Suppose B,C ∈B(X), i ∈ N and Di = {x ∈X ∶ [C/Fi](x) > 0}. Then

lim
[B/Fn]

[C/Fn]
≤

[B/Fi] + 1

[C/Fi]

on Di, modulo C4.
Proof of Claim. Working in Di and using Lemma 4.12, ∀j we have (modulo C4)

[B/Fi+j] ≤ ([B/Fi] + 1)([Fi/Fi+j] + 1)

[C/Fi+j] ≥ [C/Fi][Fi/Fi+j] > 0,

so

[B/Fi+j]
[C/Fi+j]

≤
[B/Fi] + 1

[C/Fi]
⋅
[Fi/Fi+j] + 1

[Fi/Fi+j]

≤
[B/Fi] + 1

[C/Fi]
⋅ (1 +

1

2j
),

from which the claim follows. ⊣
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Applying the claim to B = A and C =X (hence Di =X), we get that for all i ∈ N

lim
n→∞

[A/Fn](x)

[X/Fn](x)
≤

[A/Fi](x) + 1

[X/Fi](x)
(modulo C4).

Thus

lim
n→∞

[A/Fn]

[X/Fn]
≤ lim
i→∞

[A/Fi] + 1

[X/Fi]
= lim
i→∞

[A/Fi]

[X/Fi]

since limi→∞ 1
[X/Fi] = 0.

To see that m(A,x) is positive on [A]E modulo C4 we argue as follows. We work in [A]G.
Applying the above claim to B =X and C = A, we get

1

m(A,x)
= lim
n→∞

[X/Fn]

[A/Fn]
≤

[X/Fi] + 1

[A/Fi]
<∞ on Di (modulo C4).

Thus m(A,x) > 0 on ⋃i∈NDi, modulo C4. But Di ↗ [A]G because [A/Fi] → ∞ as i → ∞,
and hence m(A,x) > 0 on [A]G modulo C4. �

4.E. Proof of Theorem 4.1. Fix A,B ∈ B(X). The fact that m(A,x) ∈ [0,1] and parts
(b) and (d) follow directly from the definition of m(A,x). Part (a) follows from the fact that
[A/Fn] is Borel for all n ∈ N. (c) follows from (b) of Proposition 4.11, and (e) and (f) are
asserted by Proposition 4.19 and Lemma 4.13, respectively.

To show (g), we argue as follows. By Lemma 4.14, [A/Fn] + [B/Fn] ≤ [A ∪ B/Fn] ≤
[A/Fn] + [B/Fn] + 1, modulo C4, and thus

[A/Fn]

[X/Fn]
+

[B/Fn]

[X/Fn]
≤

[A ∪B/Fn]

[X/Fn]
≤

[A/Fn]

[X/Fn]
+

[B/Fn]

[X/Fn]
+

1

[X/Fn]
,

for all n at once, modulo C4 (using the fact that C4 is a σ-ideal). Since [X/Fn] ≥ 2n,
passing to the limit in the inequalities above, we get m(A,x) +m(B,x) ≤ m(A ∪ B,x) ≤
m(A,x) +m(B,x). QED (Theorem 4.1)

5. Finite generators in the case of σ-compact spaces

In this section we prove that the answer to Question 1.13 is positive in case X has a σ-
compact realization. To do this, we first prove Proposition 5.3, which shows how to construct
a countably additive invariant probability measure on X using a finitely additive one. We
then use Corollary 4.4 to conclude the result.

For the next two statements, let X be a second countable Hausdorff topological space
equipped with a continuous action of G.

Lemma 5.1. Let U ⊆ Pow(X) be a countable basis for X closed under the G-action and
finite unions/intersections. Let ρ be a G-invariant finitely additive probability measure on
the G-algebra generated by U . For every A ⊆X, define

µ∗(A) = inf{∑
n∈N

ρ(Un) ∶ Un ∈ U ∧ A ⊆ ⋃
n∈N

Un}.

Then:

(a) µ∗ is a G-invariant outer measure.
(b) If K ⊆X is compact, then K is metrizable and µ∗ is a metric outer measure on K (with

respect to any compatible metric).
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Proof. It is a standard fact from measure theory that µ∗ is an outer measure. That µ∗ is
G-invariant follows immediately from G-invariance of ρ and the fact that U is closed under
the action of G.

For (b), first note that by Urysohn metrization theorem, K is metrizable, and fix a metric
on K. If E,F ⊆ K are a positive distance apart, then so are Ē and F̄ . Hence there exist
disjoint open sets U,V such that Ē ⊆ U , F̄ ⊆ V . Because Ē and F̄ are compact, U,V can be
taken to be finite unions of sets in U and therefore U,V ∈ U .

Now fix ε > 0 and let Wn ∈ U , be such that E ∪ F ⊆ ⋃nWn and

(5.2) ∑
n

ρ(Wn) ≤ µ
∗(E ∪ F ) + ε ≤ µ∗(E) + µ∗(F ) + ε.

Note that {Wn ∩ U}n∈N covers E, {Wn ∩ V }n∈N covers F and Wn ∩ U,Wn ∩ V ∈ U . Also, by
finite additivity of ρ,

ρ(Wn ∩U) + ρ(Wn ∩ V ) = ρ(Wn ∩ (U ∪ V )) ≤ ρ(Wn).

Thus
µ∗(E) + µ∗(F ) ≤∑

n

ρ(Wn ∩U) +∑
n

ρ(Wn ∩ V ) ≤∑
n

ρ(Wn),

which, together with (5.2), implies that µ∗(E ∪F ) = µ∗(E) + µ∗(F ) since ε is arbitrary. �

Proposition 5.3. Suppose there exist a countable basis U ⊆ Pow(X) for X and a compact
set K ⊆X such that the G-algebra generated by U∪{K} admits a finitely additive G-invariant
probability measure ρ with ρ(K) > 0. Then there exists a countably additive G-invariant Borel
probability measure on X.

Proof. Let K,U and ρ be as in the hypothesis. We may assume that U is closed under the G-
action and finite unions/intersections. Let µ∗ be the outer measure provided by Lemma 5.1
applied to U , ρ. Thus µ∗ is a metric outer measure on K and hence all Borel subsets of K are
µ∗-measurable (see [Mun53, 13.2]). This implies that all Borel subsets of Y = [K]G = ⋃g∈G gK
are µ∗-measurable because µ∗ is G-invariant. By Carathéodory’s theorem, the restriction of
µ∗ to the Borel subsets of Y is a countably additive Borel measure on Y , and we extend it
to a Borel measure µ on X by setting µ(Y c) = 0. Note that µ is G-invariant and µ(Y ) ≤ 1.

It remains to show that µ is nontrivial, which we do by showing that µ(K) ≥ ρ(K) and
hence µ(K) > 0. To this end, let {Un}n∈N ⊆ U cover K. Since K is compact, there is a finite
subcover {Un}n<N . Thus U ∶= ⋃n<N Un ∈ U and K ⊆ U . By finite additivity of ρ, we have

∑
n∈N

ρ(Un) ≥ ∑
n<N

ρ(Un) ≥ ρ(U) ≥ ρ(K),

and hence, it follows from the definition of µ∗ that µ∗(K) ≥ ρ(K). Thus µ(K) = µ∗(K) >
0. �

Corollary 5.4. Let X be a second countable Hausdorff topological G-space whose Borel
structure is standard. For every compact set K ⊆ X not in C4, there is a G-invariant
countably additive Borel probability measure µ on X with µ(K) > 0.

Proof. Fix any countable basis U for X and let B be the Boolean G-algebra generated by
U ∪ {K}. By Corollary 4.4, there exists a G-invariant finitely additive probability measure
ρ on B such that ρ(K) > 0. Now apply Proposition 5.3. �

As a corollary, we derive the analogue of Nadkarni’s theorem for C4 in case of σ-compact
spaces.
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Corollary 5.5. Let X be a Borel G-space that admits a σ-compact realization. X ∉ C4 if
and only if there exists a G-invariant countably additive Borel probability measure on X.

Proof. ⇐: If X ∈ C4, then it is compressible in the usual sense and hence does not admit a
G-invariant Borel probability measure.
⇒: Suppose that X is a σ-compact topological G-space and X ∉ C4. Then, since X is σ-
compact and C4 is a σ-ideal, there is a compact set K not in C4. Now apply Corollary 5.4. �

Remark 5.6. For a Borel G-space X, let K denote the collection of all subsets of invariant
Borel sets that admit a σ-compact realization (when viewed as Borel G-spaces). Also, let
C denote the collection of all subsets of invariant compressible Borel sets. It is clear that K
and C are σ-ideals, and what Corollary 5.5 implies is that C ∩K ⊆ C4.

Theorem 5.7. Let X be a Borel G-space that admits a σ-compact realization. If there is no
G-invariant Borel probability measure on X, then X admits a Borel 32-generator.

Proof. By Corollary 5.5, X ∈ C4 and hence, X is 4-compressible. Thus, by Proposition 3.13,
X admits a Borel 25-generator. �

Example 5.8. Let LO denote the set of all linear orderings of N with the ordering relation
symbol <; this can be modeled as a closed subset of 2N2

, so it is a compact Polish space. We
think of each x ∈ LO as a structure (N,<x), where <x is the linear ordering of N according
to x and we write, for example, 7 <x 5 to mean that 7 is less than 5 according to x.

Letting G be the group of finite permutations of elements of N, we see that G is countable
and acts continuously on LO in the natural way:

n <gx m⇔ g−1(n) <x g
−1(m),

for n,m ∈ N, g ∈ G,x ∈ LO; this is referred to as the logic action.
Put Y = LO ∖ DLO, where DLO denotes the set of all dense linear orderings without

endpoints (copies of Q). It is straightforward to see that DLO is a Gδ subset of LO, hence
Y is Fσ and therefore σ-compact since LO is compact. Also clearly Y is G-invariant.

Let µ be the unique measure on LO defined by µ(V(F,<F )) = 1
n! , where (F,<F ) is a finite

linearly ordered subset of N of cardinality n and V(F,<F ) is the set of all linear orderings
of N extending the order <F on F . It is not hard to check (shown in [GW02]) that µ is
the unique invariant measure for the action of G on LO and µ(Y ) = 0. Thus, there is
no G-invariant Borel probability measure on Y and hence, by Theorem 5.7, Y admits a
32-generator. However, as pointed out by Todor Tsankov and the referee, LO (and hence
also Y ) already has an obvious 2-generator: namely, the partition generated by the set
{x ∈ LO ∶ 0 <x 1}.

Nevertheless, we can modify this example to make the application of Theorem 5.7 more
fruitful by considering multiple relations instead of just one. For example, for n ≥ 1, let
LOn be the set of all n-tuples of linear orderings of N with the ordering relation symbols
<0,<1, ...,<n−1, and, as before, consider the natural (logic) action of G on LOn; this can be
modeled as the coordinatewise (diagonal) action of G on LOn ∶= LOn, i.e. g(x0, x1, ..., xn−1) =
(gx0, gx1, ..., gxn−1). The Polish G-space LOn has an obvious 2n-generator: namely, the
partition generated by the sets {x ∈ LOn ∶ 0 <ix 1}, i < n. However, letting X = LOn ∖
DLOn, we again see that it is G-invariant and σ-compact. Moreover, X does not admit an
invariant probability measure because otherwise, one of the sets of the form LOi×Y ×LOn−i−1
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would have positive measure, so the pushforward measure under the projection onto the ith

coordinate would be a nontrivial finite invariant measure on Y , but we argued above that
such a measure does not exist. Thus, by Theorem 5.7, X has a 32-generator, which gives us
something new when n > 5.

6. Finitely traveling sets

Throughout this section, let X be a Borel G-space.

Definition 6.1. Let A,B ∈ B(X) be equidecomposable, i.e. there are N ≤ ∞, {gn}n<N ⊆ G
and Borel partitions {An}n<N and {Bn}n<N of A and B, respectively, such that gnAn = Bn

for all n < N . A,B are said to be

● locally finitely equidecomposable (denote by A ∼lfin B), if {An}n<N ,{Bn}n<N ,{gn}n<N
can be taken so that for every x ∈ A, An ∩ [x]G = ∅ for all but finitely many n < N ;

● finitely equidecomposable (denote by A ∼fin B), if N can be taken to be finite.

The notation ≺fin, ≺lfin and the notions of finite and locally finite compressibility are defined
analogous to Definitions 1.23 and 1.25.

Definition 6.2. A Borel set A ⊆X is called (locally) finitely traveling if there exists pairwise
disjoint Borel sets {An}n∈N such that A0 = A and A ∼fin An (A ∼lfin An), ∀n ∈ N.

Proposition 6.3. If X is (locally) finitely compressible then X admits a (locally) finitely
traveling Borel complete section.

Proof. We prove for finitely compressible X, but note that everything below is also locally
valid (i.e. restricted to every orbit) for a locally compressible X.

Run the proof of the first part of Lemma 3.4 noting that a witnessing map γ ∶ X → G of
finite compressibility of X has finite image and hence the image of each δn (in the notation
of the proof) is finite, which implies that the obtained traveling set A is actually finitely
traveling. �

Proposition 6.4. If X admits a locally finitely traveling Borel complete section, then X ∈ C4.

Proof. Let A be a locally finitely traveling Borel complete section and let {An}n∈N be as in
Definition 6.2. Let In = {Cn

k }k∈N, Jn = {Dn
k}k∈N be Borel partitions of A and An, respectively,

that together with {gnk}k∈N ⊆ G witness A ∼lfin An (as in Definition 6.1). Let B denote the
Boolean G-algebra generated by {X} ∪⋃n∈N(In ∪Jn ∪ {An}).

Now assume for contradiction that X ∉ C4 and hence, A ∉ C4. Thus, applying Corollary 4.4
to A and B, we get a G-invariant finitely additive probability measure µ on B with µ(A) > 0.
Moreover, there is x ∈ A such that ∀B ∈ B with B ∩ [x]G = ∅, µ(B) = 0.

Claim. µ(An) = µ(A), for all n ∈ N.

Proof of Claim. For each n, let {Cn
ki
}i<Kn be the list of those Cn

k such that Cn
k ∩ [x]G ≠ ∅

(Kn < ∞ by the definition of locally finitely traveling). Set B = A ∖ (⋃i<Kn
Cn
ki
) and note

that by finite additivity of µ,

µ(A) = µ(B) + ∑
i<Kn

µ(Cn
ki
).

Similarly, set B′ = An ∖ (⋃i<Kn
Dn
ki
) and hence

µ(An) = µ(B
′) + ∑

i<Kn

µ(Dn
ki
).
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But B ∩ [x]G = ∅ and B′ ∩ [x]G = ∅, and thus µ(B) = µ(B′) = 0. Also, since gnkiC
n
ki
=Dn

ki
and

µ is G-invariant, µ(Cn
ki
) = µ(Dn

ki
). Therefore

µ(A) = ∑
i<Kn

µ(Cn
ki
) = ∑

i<Kn

µ(Dn
ki
) = µ(An).

⊣

This claim contradicts µ being a probability measure since for large enoughN , µ(⋃n<N An) =
Nµ(A) > 1, contradicting µ(X) = 1. �

This, together with Proposition 3.13, implies the following.

Corollary 6.5. Let X be a Borel G-space. If X admits a locally finitely traveling Borel
complete section, then there is a Borel 32-generator.

7. Locally weakly wandering sets and other special cases

Assume throughout the section that X is a Borel G-space.

Definition 7.1. We say that A ⊆X is

● weakly wandering with respect to H ⊆ G if (hA)∩(h′A) = ∅, for all distinct h,h′ ∈H;
● weakly wandering, if it is weakly wandering with respect to an infinite subset H ⊆ G

(by shifting H, we can always assume 1G ∈H);
● locally weakly wandering if for every x ∈X, A[x]G is weakly wandering.

7.A. Weakly wandering sets and finite generators. The following is a prototypical/toy
example of a construction of a finite generator, and it has served as a driving idea for a number
of constructions in the current paper.

Proposition 7.2. If a G-space X admits a Borel weakly wandering complete section, then
it admits a 3-generator.

Proof. Let W be a Borel complete section that is weakly wandering with respect to an infinite
sequence (gn)n∈N ⊆ G, where g0 = 1G. Let (Un)n≥1 be a sequence of Borel sets that generate
the Borel σ-algebra of X (e.g. a countable basis of open sets in a compatible Polish topology)
and put

V = ⋃
n≥1

(gnW ∩ gnUn).

Thus, W ∩ V = ∅ and we claim that the partition {W,V, (W ∪ V )c} is a generator. Indeed,
fix distinct points x, y ∈X. Because W intersects the orbit of x, there is g ∈ G with gx ∈W ,
so by replacing x, y with gx, gy, we may assume that x was in W to begin with. Now if y
is not in W , then W separates x and y, and we are done; so suppose y is also in W . Then,
since {Un}n≥1 separates points, there must be n ≥ 1 such that x ∈ Un but y ∉ Un. But then
gnx ∈ gnW ∩ gnUn, and hence gnx ∈ V , whereas gny ∉ gnUn, so gny ∉ V because gny ∈ gnW
and gnW ∩ V ⊆ gnUn. Thus g−1

n V separates x and y. �

Examples 7.3.

(a) Let X = R and let Z act on R by translation. Then any interval is weakly wandering
and any interval of length greater than 1 is a complete section. Thus, by the above
proposition, this Polish Z-space admits a 3-generator.



FINITE GENERATORS FOR COUNTABLE GROUP ACTIONS 33

(b) Let X = N (the Baire space) and Ẽ0 be the equivalence relation of eventual agreement
of sequences of natural numbers. We find a countable group G of homeomorphisms of
X such that EG = Ẽ0. For each s, t ∈ N<N with s ⊥ t (i.e. s ⊈ t and t ⊈ s) or s = t, let
φs,t ∶X →X be defined as follows:

φs,t(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

t⌢y if x = s⌢y
s⌢y if x = t⌢y
x otherwise

,

and let G be the group generated by {φs,t ∶ s, t ∈ N<N, ∣s∣ = ∣t∣}. It is clear that each φs,t
is a homeomorphism of X and EG = Ẽ0. Now for n ∈ N, let Xn = {x ∈X ∶ x(0) = n} and
let gn = φ0,n. Then the Xn are pairwise disjoint and gnX0 = Xn. Hence X0 is a weakly
wandering complete section and thus X admits a Borel 3-generator by Proposition 7.2.

(c) Let X = 2N (the Cantor space) and Et be the tail equivalence relation on X, that is:

xEty⇔ (∃n,m ∈ N)(∀k ∈ N)x(n + k) = y(m + k).

Let G be the group generated by {φs,t ∶ s, t ∈ 2<N, s ⊥ t}, where the φs,t are defined as
above. To see that EG = Et fix x, y ∈ X with xEty. Thus, there are nonempty s, t ∈ 2<N

and z ∈ X such that x = s⌢z and y = t⌢z. If s ⊥ t, then y = φs,t(x). Otherwise, assume,
say, s ⊑ t and let s′ ∈ 2<N be such that s ⊥ s′ (exists since s ≠ ∅). Then s′ ⊥ t and
y = φs′,t ○ φs,s′(x).

Now for n ∈ N, let sn = 11...1
²

n

0 and Xn = {x ∈ X ∶ x = sn ⌢ y, for some y ∈ X}. Note

that the sn are pairwise incompatible and hence the Xn are pairwise disjoint. Letting
gn = φs0,sn , we see that gnX0 =Xn. Thus X0 is a weakly wandering complete section and
hence X admits a Borel 3-generator by Proposition 7.2.

7.B. Localization. Let F (GN) denote the Effros space of GN, i.e. the standard Borel space
of closed subsets of GN, see [Kec95, 12.C]. Below we use a Borel selector for F (GN), i.e. a
Borel function s ∶ F (GN) → GN with s(F ) ∈ F for each nonempty F ∈ F (GN). It is a basic
fact of descriptive set theory that such functions exist; see, for example, [Kec95, Theorem
12.13].

For A ⊆X and x ∈ A, put

∆A(x) = {(gn)n∈N ∈ GN ∶ g0 = 1G ∧ ∀n ≠m(gnA
[x]G ∩ gmA[x]G = ∅)}.

Proposition 7.4. Let A ∈B(X).

(a) ∀x ∈X, ∆A(x) is a closed set in GN.
(b) ∆A ∶ A→ F (GN) is σ(Σ1

1)-measurable and hence universally measurable.
(c) ∆A is FA-invariant, i.e. ∀x, y ∈ A, if xFAy then ∆A(x) = ∆A(y).
(d) If A is locally weakly wandering, then it is 1-traveling with σ(Σ1

1)-pieces. In fact, for
any Borel selector s ∶ F (GN) → GN, the function γ ∶= s ○∆A is a σ(Σ1

1)-measurable FA-
and G-invariant travel guide for A.

Proof. (a) ∆A(x)c is open since being in it is witnessed by two coordinates.
(b) For s ∈ G<N, let Bs = {F ∈ F (GN) ∶ F ∩ Vs ≠ ∅}, where Vs = {α ∈ GN ∶ α ⊒ s}. Since

{Bs}s∈G<N generates the Borel structure of F (GN), it is enough to show that ∆−1
A (Bs)

is analytic, for every s ∈ G<N. But ∆−1
A (Bs) = {x ∈ X ∶ ∃(gn)n∈N ∈ Vs[g0 = 1G ∧ ∀n ≠

m(gnA[x]G ∩ gmA[x]G = ∅)]} is clearly analytic.
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(c) Assume for contradiction that xFAy, but ∆A(x) ≠ ∆A(y) for some x, y ∈ A. We may
assume that there is (gn)n∈N ∈ ∆A(x) ∖ ∆A(y) and thus ∃n ≠ m such that gnA[y]G ∩
gmA[y]G ≠ ∅. Hence A[y]G∩g−1

n gmA
[y]G ≠ ∅ and let y′, y′′ ∈ A[y]G be such that y′′ = g−1

n gmy
′.

Let g ∈ G be such that y′ = gy.
Since y′ = gy, y′′ = g−1

n gmgy are in A, xFAy, and A is FA-invariant, gx, g−1
n gmgx are in

A as well. Thus A[x]G ∩ g−1
n gmA

[x]G ≠ ∅, contradicting gnA[y]G ∩ gmA[y]G = ∅ (this holds
since (gn)n∈N ∈ ∆A(x)).

(d) Follows from parts (b) and (c), and the definition of ∆A.
�

Theorem 7.5. Let X be a Borel G-space. If there is a locally weakly wandering Borel
complete section for X, then X admits a Borel 4-generator.

Proof. By part (d) of 7.4 and Proposition 3.8, X is 1-compressible. Thus, by Proposition 3.13,
X admits a Borel 22-finite generator. �

7.C. Countable unions of weakly wandering sets. We can do even better in the case
when a locally weakly wandering complete section is actually a countable union of weakly
wandering sets.

Corollary 7.6. Let X be a Borel G-space. If X admits a complete section that is a countable
union of weakly wandering Borel sets, then X admits a Borel 3-generator.

Proof. Let (Wn)n∈N be a sequence of Borel weakly wandering sets such that ⋃n∈NWn is a
complete section. By replacing each Wn with Wn∖⋃i<n[Wi]G, we may assume that the [Wn]G
are pairwise disjoint and hence A ∶= ⋃n∈NWn is a locally weakly wandering complete section.
Using countable choice, take a function p ∶ N → GN such that ∀n ∈ N, p(n) ∈ ⋂x∈Wn

∆Wn(x)
(we know that ⋂x∈Wn

∆Wn(x) ≠ ∅ since Wn is weakly wandering).
Define γ ∶ A→ GN by

x↦ the smallest k such that p(k) ∈ ∆A(x).

The condition p(k) ∈ ∆A(x) is Borel because it is equivalent to ∀n,m ∈ N, y, z ∈ A ∩
[x]G, p(k)(n)y = p(k)(m)z ⇒ n = m ∧ x = y; thus γ is a Borel function. Note that γ is
a travel guide for A by definition. Moreover, it is FA-invariant because if ∆A(x) = ∆A(y)
for some x, y ∈ A, then conditions p(k) ∈ ∆A(x) and p(k) ∈ ∆A(y) hold or fail together.
Since ∆A is FA-invariant, so is γ. Hence, Lemma 3.12 applied to I = ⟨A⟩ gives a Borel
(2 ⋅ 2 − 1)-generator. �

In the light of this last corollary, we now record a version of the Hajian–Kakutani–Itô
theorem (see 1.21) as a corollary of the same theorem.

Corollary 7.7. Let (X,µ) be a standard probability space equipped with a nonsingular Borel
action of G. There is no invariant Borel probability measure absolutely continuous with
respect to µ if and only if, modulo µ-NULL, there is a complete section that is a countable
union of weakly wandering Borel sets.

Proof. The right-to-left direction immediately follows from the fact that ifW is a weakly wan-
dering Borel set and ν is an invariant finite measure, then ν([W ]G) = 0. For the left-to-right
direction, we use a standard measure exhaustion argument based on iterative applications
of the Hajian–Kakutani–Itô theorem. By recursion on n ∈ N, we will define a decreasing
sequence (Xn)n∈N of invariant Borel sets as well as a disjoint sequence (Wn)n∈N of µ-positive
weakly wandering Borel sets such that
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(i) the Xn are µ-vanishing, i.e. ⋂n∈NXn is µ-null,
(ii) Wn is a complete section for Xn ∖Xn+1, i.e. [Wn]G =Xn ∖Xn+1.

To this end, put X0 ∶=X, and assuming that Xn is defined, apply the Hajian–Kakutani–Itô
theorem to Xn and get that the set

Wn ∶= {W ⊆Xn ∶W is Borel and µ(W ) > 0}

is nonempty. Thus there is Wn ∈Wn with µ(Wn) >
1
2wn, where wn ∶= supW ∈Wn

µ(W ). Putting
Xn+1 ∶= Xn ∖ [Wn]G, we are through with the construction. However, we still have to check
that X∞ ∶= ⋂n∈NXn is µ-null. If µ(X∞) > 0, an application of the Hajian–Kakutani–Itô
theorem to X∞ would provide a µ-positive weakly wandering Borel set W∞ ⊆ X∞. But the
sequence (wn)n∈N is summable since the Wn are pairwise disjoint and µ(Wn) >

1
2wn, so for

large enough n ∈ N, wn < µ(W∞), contradicting the definition of wn.
Finally, putting W = ⋃n∈NWn, we get a complete section for X ∖X∞ that is a countable

union of weakly wandering Borel sets. �

Corollaries 7.6 and 7.7 immediately imply the following version of the Krengel–Kuntz
theorem (see 1.18) with a 3-generator instead of 2.

Corollary 7.8. Let (X,µ) be a standard probability space equipped with a nonsingular Borel
action of G. If there is no invariant Borel probability measure absolutely continuous with
respect to µ, then X admits a 3-generator modulo µ-NULL.

7.D. Further special cases. Using the function ∆ defined above, we give another proof of
Proposition 3.10.

Proposition 3.10. Let X be an aperiodic Borel G-space and T ⊆ X be Borel. If T is a
partial transversal, then T is ⟨T ⟩-traveling.

Proof. By definition, T is locally weakly wandering.

Claim. ∆T is Borel.

Proof of Claim. Using the notation of the proof of part (b) of Proposition 7.4, it is enough
to show that ∆−1

T (Bs) is Borel for every s ∈ G<N. But since ∀x ∈ T , T ∩ [x]G is a singleton,
∆T (x) ∈ Bs is equivalent to s(0) = 1G ∧ (∀n < m < ∣s∣) s(m)x ≠ s(n)x. The latter condition
is Borel, hence so is ∆−1

T (Bs). ⊣

By part (d) of 7.4, γ = s ○∆T is a Borel FT -invariant travel guide for T . �

Corollary 7.9. Every aperiodic and smooth Borel G-space X admits a Borel 3-generator.

Proof. Let T ⊆ X be a Borel transversal. By Proposition 3.10, T is ⟨T ⟩-traveling. Thus, by
Lemma 3.12, there is a Borel (2 ⋅ 2 − 1)-generator. �

Lastly, in case of smooth free actions, a direct construction gives the optimal result as the
following proposition shows.

Proposition 7.10. Let X be a Borel G-space. If the G-action is free and smooth, then X
admits a Borel 2-generator.

Proof. Let T ⊆ X be a Borel transversal. Also let G ∖ {1G} = {gn}n∈N be such that gn ≠ gm
for n ≠m. Because the action is free, gnT ∩ gmT = ∅ for n ≠m.
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Define π ∶ N→ N recursively as follows:

π(n) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min{m ∶ gm ∉ {gπ(i) ∶ i < n}} if n = 3k
min{m ∶ gm, gmgk ∉ {gπ(i) ∶ i < n}} if n = 3k + 1
the unique l s.t. gl = gπ(3k+1)gk if n = 3k + 2

.

Note that π is a bijection. Fix a countable family {Un}n∈N generating the Borel sets and
put A = ⋃k∈N gπ(3k)(T ∩ Uk) ∪⋃k∈N gπ(3k+1)T . Clearly, A is Borel, and we show that I = ⟨A⟩
is a generator. Fix distinct x, y ∈X. Note that since T is a complete section, we can assume
that x ∈ T .

First assume y ∈ T . Take k with x ∈ Uk and y ∉ Uk. Then gπ(3k)x ∈ gπ(3k)(T ∩Uk) ⊆ A and
gπ(3k)y ∈ gπ(3k)(T ∖Uk). However gπ(3k)(T ∖Uk) ∩A = ∅ and hence gπ(3k)y ∉ A.

Now suppose y ∉ T . Then there exists y′ ∈ T [y]G and k such that gky′ = y. Now gπ(3k+1)x ∈
gπ(3k+1)T ⊆ A and gπ(3k+1)y = gπ(3k+1)gky′ = gπ(3k+2)y′ ∈ gπ(3k+2)T . But gπ(3k+2)T ∩A = ∅, hence
gπ(3k+1)y ∉ A. �

Corollary 7.11. Let H be a Polish group and G be a countable subgroup of H. If G admits
an infinite discrete subgroup, then the translation action of G on H admits a 2-generator.

Proof. Let G′ be an infinite discrete subgroup of G. Clearly, it is enough to show that the
translation action of G′ on H admits a 2-generator. Since G′ is discrete, it is closed. Indeed,
if d is a left-invariant compatible metric on H, then Bd(1H , ε) ∩G′ = {1H}, for some ε > 0.
Thus every d-Cauchy sequence in G′ is eventually constant and hence G′ is closed. This
implies that the translation action of G′ on H is smooth and free (see [Kec95, 12.17]), and
hence Proposition 7.10 applies. �

8. Separating partitions

Assume throughout this section that X is a Borel G-space.

8.A. Aperiodic separation and G-equivariant maps to 2G.

Lemma 8.1. If X is aperiodic then it admits a countably infinite partition into Borel com-
plete sections.

Proof. The following argument is also given in [KM04, proof of Theorem 13.1]. By the
marker lemma (see [KM04, 6.7]), there exists a vanishing sequence {Bn}n∈N of decreasing
Borel complete sections, i.e. ⋂n∈NBn = ∅. For each n ∈ N, define kn ∶ X → N recursively as
follows:

{
k0(x) = 0

kn+1(x) = min{k ∈ N ∶ Bkn(x) ∩ [x]G ⊈ Bk}
,

and define An ⊆X by

x ∈ An⇔ x ∈ Bkn(x) ∖Bkn+1(x).

It is straightforward to check that An are pairwise disjoint Borel complete sections. �

For A ∈ B(X), if I = ⟨A⟩ then we use the notation FA and fA instead of FI and fI ,
respectively.

We now work towards strengthening the above lemma to yield a countably infinite partition
into FA-invariant Borel complete sections.
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Definition 8.2 (Aperiodic separation). For Borel sets A,Y ⊆X, we say that A aperiodically
separates Y if fA([Y ]G) is aperiodic (as an invariant subset of the shift 2G). If such A exists,
we say that Y is aperiodically separable.

Proposition 8.3. For A ∈B(X), if A aperiodically separates X, then X admits a countably
infinite partition into Borel FA-invariant complete sections.

Proof. Let Y = {y ∈ 2G ∶ ∣[y]G∣ = ∞} and hence fA(X) is a G-invariant subset of Y . By
Lemma 8.1 applied to Y , there is a partition {Bn}n∈N of Y into Borel complete sections.
Thus An = f−1

I (Bn) is a Borel FA-invariant complete section for X and {An}n∈N is a partition
of X. �

Let A denote the collection of all subsets of aperiodically separable Borel sets.

Lemma 8.4. A is a σ-ideal.

Proof. We only have to show that if Yn are aperiodically separable Borel sets, then Y =

⋃n∈N Yn ∈ A. Let An be a Borel set aperiodically separating Yn. Since An also aperiodically
separates [Yn]G (by definition), we can assume that Yn isG-invariant. Furthermore, by taking
Y ′
n = Yn∖⋃k<n Yk, we can assume that Yn are pairwise disjoint. Now letting A = ⋃n∈N(An∩Yn),

it is easy to check that A aperiodically separates Y . �

Let S denote the collection of all subsets of smooth sets. By a similar argument as the
one above, S is a σ-ideal.

Lemma 8.5. If X is aperiodic, then S ⊆ A.

Proof. Let S ∈ S and hence there is a Borel transversal T for [S]G. Fix x ∈ S and let
y ≠ z ∈ [x]G. Since T is a transversal, there is g ∈ G such that gy ∈ T , and hence gz ∉ T . Thus
fT (y) ≠ fT (z), and so fT ([x]G) is infinite. Therefore T aperiodically separates [S]G. �

For the rest of this subsection, fix an enumeration G = {gn}n∈N and let F n
A be following

equivalence relation:

yF n
Az⇔ ∀k < n(gky ∈ A↔ gkz ∈ A).

Note that F n
A has no more than 2n equivalence classes and that yFAz if and only if ∀n(yF n

Az).

Lemma 8.6. For A,Y ∈B(X), A aperiodically separates Y if and only if (∀x ∈ Y )(∀n)(∃y, z ∈
Y [x]G)[yF n

Az ∧ ¬(yFAz)].

Proof. ⇒: Assume that for all x ∈ Y , fA([x]G) is infinite and thus FA ⇂[x]G has infinitely many
equivalence classes. Fix n ∈ N and recall that F n

A has only finitely many equivalence classes.
Thus, by the Pigeon Hole Principle, there are y, z ∈ Y [x]G such that yF n

Az yet ¬(yFAz).
⇐: Assume for contradiction that fA(Y [x]G) is finite for some x ∈ Y . Then it follows that
FA = F n

A, for some n, and hence for any y, z ∈ Y [x]G , yF n
Az implies yFAz, contradicting the

hypothesis. �

Theorem 8.7. If X is an aperiodic Borel G-space, then X ∈ A.

Proof. By Lemma 8.1, there is a partition {An}n∈N of X into Borel complete sections. We
will inductively construct Borel sets Bn ⊆ Cn, where Cn should be thought of as the set of
points colored (black or white) at the nth step, and Bn as the set of points colored black
(thus Cn ∖Bn is colored white).
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Define a function # ∶ X → N by x ↦ m, where m is such that x ∈ Am. Fix a countable
family {Un}n∈N of sets generating the Borel σ-algebra of X.

Assuming that for all k < n, Ck,Bk are defined, let C̄n = ⋃k<nCk and B̄n = ⋃k<nBk. Put
Pn = {x ∈ A0 ∶ ∀k < n(gkx ∈ C̄n) ∧ gnx ∉ C̄n} and set Fn = F n

B̄n
⇂Pn , that is for all x, y ∈ Pn,

yFnz⇔ ∀k < n(gky ∈ B̄n↔ gkz ∈ B̄n).

Now put C ′
n = {x ∈ Pn ∶ #(gnx) = min #((gnPn)[x]G)}, C ′′

n = {x ∈ C ′
n ∶ ∃y, z ∈ (C ′

n)
[x]G(y ≠

z ∧ yFnz)} and Cn = gnC ′′
n . Note that it follows from the definition of Pn that Cn is disjoint

from C̄n.
Now in order to define Bn, first define a function n̄ ∶X → N by

x↦ the smallest m such that there are y, z ∈ C ′′
n ∩ [x]G with yFnz, y ∈ Um and z ∉ Um.

Note that n̄ is Borel and G-invariant. Lastly, let B′
n = {x ∈ C ′′

n ∶ x ∈ Un̄(x)} and Bn = gnB′
n.

Clearly Bn ⊆ Cn. Now let B = ⋃n∈NBn and D = [⋃n∈N(C ′
n ∖C

′′
n)]G. We show that B

aperiodically separates Y ∶=X ∖D and D ∈S. Since S ⊆ A and A is an ideal, this will imply
that X ∈ A.

Claim 1. D ∈S.

Proof of Claim. Since S is a σ-ideal, it is enough to show that for each n, [C ′
n ∖C

′′
n ]G ∈ S,

so fix n ∈ N. Clearly (C ′
n ∖ C

′′
n)

[x]G is finite, for all x ∈ X, since there can be at most 2n

pairwise Fn-nonequivalent points. Thus, fixing some Borel linear ordering of X and taking
the smallest element from (C ′

n∖C
′′
n)

[x]G for each x ∈ C ′
n∖C

′′
n , we can define a Borel transversal

for [C ′
n ∖C

′′
n ]G. ⊣

By Lemma 8.6, to show that B aperiodically separates Y , it is enough to show that
(∀x ∈ Y )(∀n)(∃y, z ∈ [x]G)[yF n

Bz ∧ ¬(yFBz)]. Fix x ∈ Y .

Claim 2. (∃∞n)(C ′′
n)

[x]G ≠ ∅.

Proof of Claim. Assume for contradiction that (∀∞n)(C ′′
n)

[x]G = ∅. Since x ∉ D, it follows

that (∀∞n)P [x]G
n = ∅. Since A0 is a complete section and C̄0 = ∅, P

[x]G
0 ≠ ∅. Let N be the

largest number such that P
[x]G
N ≠ ∅. Thus for all n > N , C

[x]G
n = ∅ and hence for all n > N ,

C̄
[x]G
n = C̄

[x]G
N+1 . Because C

[x]G
N ≠ ∅, there is y ∈ A

[x]G
0 such that ∀k ≤ N(gky ∈ C̄N+1); but

because P
[x]G
N+1 = ∅, gN+1y must also fall into C̄N+1. By induction on n > N , we get that for

all n > N , gny ∈ C̄n and thus gny ∈ C̄N+1.
On the other hand, it follows from the definition of C ′

n that for each n, (C ′
n)

[x]G intersects

exactly one of Ak. Thus C̄
[x]G
N+1 intersects at most N + 1 of Ak and hence there exists K ∈ N

such that for all k ≥ K, C̄
[x]G
N+1 ∩ Ak = ∅. Since ∃∞n(gny ∈ ⋃k≥K Ak), ∃∞n(gny ∉ C̄N+1), a

contradiction. ⊣

Now it remains to show that for all n ∈ N, (C ′′
n)

[x]G ≠ ∅ implies that ∃y, z ∈ [x]G such
that yF n

Bz but ¬(yFBz). To this end, fix n ∈ N and assume (C ′′
n)

[x]G ≠ ∅. Thus there are
y, z ∈ (C ′′

n)
[x]G such that yFnz, y ∈ Un̄(x) and z ∉ Un̄(x); hence, gny ∈ Bn and gnz ∉ Bn, by the

definition of Bn. Since the Ck are pairwise disjoint, Bn ⊆ Cn and gny, gnz ∈ Cn, it follows
that gny ∈ B and gnz ∉ B, and therefore ¬(yFBz). Finally, note that Fn = F n

B ⇂Pn and hence
yF n

Bz. �

It is worth explicitly stating the previous theorem in terms of the coding map fA:
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Theorem 8.8. Any aperiodic Borel G-space admits a G-equivariant Borel map to the ape-
riodic part of the shift action G↷ 2G.

Corollary 8.9. For an aperiodic Borel Z-space X, there is a Borel set A ⊆ X such that
G⟨A⟩ separates points in each orbit, i.e. fA ⇂[x]Z is one-to-one, for all x ∈X.

Proof. Let A be a Borel set aperiodically separating X (exists by Theorem 8.7) and put
Y = fA(X). Then Y ⊆ 2Z is aperiodic and hence the action of Z on Y is free. But this
implies that for all y ∈ Y , f−1

A (y) intersects every orbit in X at no more than one point, and
hence fA is one-to-one on every orbit. �

From Proposition 8.3 and Theorem 8.7 we immediately get the following strengthening of
Lemma 8.1.

Corollary 8.10. Any aperiodic Borel G-space X admits a countably infinite partition into
Borel FA-invariant complete sections, for some Borel set A ⊆X.

8.B. Separating smooth-many invariant sets. The following is a useful tool in con-
structing generators and we will apply it in the next section to the equivalence relation E of
being in the same component of the ergodic decomposition.

Definition 8.11 (Smooth equivalence relations). An equivalence relation E on a standard
Borel space X is called smooth if there is a Borel map h ∶ X → R reducing E to the equality
relation on R, i.e. for each x, y ∈X,

xEy ⇐⇒ h(x) = h(y).

Note that since any two uncountable Polish spaces are Borel isomorphic (see [Kec95,
Theorem 15.6]), in the above definition R can be replaced with any other uncountable Polish
space. Also note that a smooth equivalence relation E is automatically Borel (as a subset
of X2) because E = h̄−1(∆(R)), where ∆(R) = {(r, r) ∶ r ∈ R} and h̄ ∶ X2 → R2 is defined by
(x, y)↦ (h(x), h(y)).

It is a theorem of Burgess (see [Bur79]) that for a Borel G-space X, the orbit equivalence
relation EG is smooth if and only if the action G↷X is smooth in the sense of Definition 3.9,
that is: X admits a Borel transversal.

For a Borel G-space X, an equivalence relation E on X is called G-invariant if EG ⊆ E;
in other words, each E-class is a union of G-orbits.

Theorem 8.12. Let X be an aperiodic Borel G-space and let E be a smooth G-invariant
equivalence relation on X. There exists a partition P of X into 4 Borel sets such that GP
separates any two E-nonequivalent points in X, i.e. for all x, y ∈ X, [x]E ≠ [y]E implies
fP(x) ≠ fP(y).

Proof. By Corollary 8.10, there is A ∈ B(X) and a Borel partition {An}n∈N of X into FA-
invariant complete sections. Fix an enumeration G = {gn}n∈N, and for each n ∈ N, define a
function n̄ ∶X → N by

x↦ the smallest m such that ∃x′ ∈ A[x]G
0 with gmx

′ ∈ An.

Clearly n̄ is Borel, and because all of Ak are FA-invariant, n̄ is also FA-invariant, i.e. for all
x, y ∈X, xFAy → n̄(x) = n̄(y). Also, n̄ is G-invariant by definition.

Put A′
n = {x ∈ A0 ∶ gn̄(x)x ∈ An} and note that A′

n is FA-invariant Borel since so are n̄, A0

and An. Moreover, A′
n is clearly a complete section. Define γn ∶ A′

n → An by x ↦ gn̄(x)x.
Clearly, γn is Borel and one-to-one.
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Since E is smooth, there is a Borel h ∶X → R such that for all x, y ∈X, xEy↔ h(x) = h(y).
Let {Vn}n∈N be a countable family of subsets of R generating the Borel σ-algebra of R and
put Un = h−1(Vn). Because each equivalence class of E is G-invariant, so is h and hence so
is Un.

Now let Bn = γn(A′
n ∩ Un) and note that Bn is Borel being a one-to-one Borel image

of a Borel set. It follows from the definition of γn that Bn ⊆ An. Put B = ⋃n∈NBn and
P = ⟨A,B⟩; in particular, ∣P ∣ ≤ 4. We show that P is what we want. To this end, fix x, y ∈X
with ¬(xEy). If ¬(xFAy), then G⟨A⟩ (and hence GP) separates x and y.

Thus assume that xFAy. Since h(x) ≠ h(y), there is n such that h(x) ∈ Vn and h(y) ∉ Vn.
Hence, by invariance of Un, gx ∈ Un∧gy ∉ Un, for all g ∈ G. Because A′

n is a complete section,
there is g ∈ G such that gx ∈ A′

n and hence gy ∈ A′
n since A′

n is FA-invariant. Let m = n̄(gx)
(= n̄(gy)). Then gmgx ∈ Bn while gmgy ∉ Bn although gmgy ∈ γn(A′

n) ⊆ An. Thus gmgx ∈ B
but gmgy ∉ B and therefore GP separates x and y. �

9. Potential dichotomy theorems

In this section we prove dichotomy theorems assuming Weiss’s question has a positive
answer for G = Z. In the proofs we use the Ergodic Decomposition Theorem (see [Far62],
[Var63]) and a Borel/uniform version of Krieger’s finite generator theorem, so we first state
both of the theorems and sketch the proof of the latter.

For a Borel G-space X, let MG(X) denote the set of G-invariant Borel probability mea-
sures on X and let EG(X) denote the set of ergodic ones among those. Clearly both are
Borel subsets of P (X) (the standard Borel space of Borel probability measures on X) and
thus are themselves standard Borel spaces.

Ergodic Decomposition Theorem 9.1 (Farrell, Varadarajan). Let X be a Borel G-space.
If MG(X) ≠ ∅ (and hence EG(X) ≠ ∅), then there is a Borel surjection x↦ ex from X onto
EG(X) such that:

(i) xEGy⇒ ex = ey;
(ii) For each e ∈ EG(X), if Xe = {x ∈ X ∶ ex = e} (hence Xe is invariant Borel), then

e(Xe) = 1 and e⇂Xe is the unique ergodic invariant Borel probability measure on Xe;
(iii) For each µ ∈MG(X) and A ∈B(X), we have µ(A) = ∫ ex(A)dµ(x).

For the rest of the section, let X be a Borel Z-space.
For e ∈ EZ(X), if we let he denote the entropy of (X,Z, e), then the map e ↦ he is Borel.

Indeed, if {Pk}k∈N is a refining sequence of partitions of X that generates the Borel σ-algebra
of X, then, by [Dow11, 4.1.2], he = limk→∞ he(Pk,Z), where he(Pk,Z) denotes the entropy
of Pk. By [Kec95, 17.21], the function e↦ he(Pk) is Borel and thus so is the map e↦ he.

For all e ∈ EZ(X) with he <∞, let Ne be the smallest integer such that log2Ne > he. The
map e↦ Ne is Borel because so is e↦ he.

Krieger’s Finite Generator Theorem 9.2 (Uniform version). Let X be a Borel Z-space.
Suppose MZ(X) ≠ ∅ and let ρ be the map x↦ ex as in the Ergodic Decomposition Theorem.
Assume also that all measures in EZ(X) have finite entropy and let e↦ Ne be the map defined
above. Then there is a partition {An}n≤∞ of X into Borel sets such that

(i) A∞ is invariant and does not admit an invariant Borel probability measure;
(ii) For each e ∈ EZ(X), {An ∩Xe}n<Ne is a generator for Xe ∖A∞, where Xe = ρ−1(e).
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Sketch of Proof. Note that it is enough to find a Borel invariant set X ′ ⊆ X and a Borel
Z-map φ ∶X ′ → NZ, such that for each e ∈ EZ(X), we have

(I) e(X ∖X ′) = 0;
(II) φ ⇂Xe∩X′ is one-to-one and φ(Xe ∩X ′) ⊆ (Ne)Z, where (Ne)Z is naturally viewed as a

subset of NZ.

Indeed, assume we had such X ′ and φ, and let A∞ =X ∖X ′ and An = φ−1(Vn) for all n ∈ N,
where Vn = {y ∈ NZ ∶ y(0) = n}. Then it is clear that {An}n∈N satisfies (ii). Also, (I) and part
(iii) of the Ergodic Decomposition Theorem imply that (i) holds for A∞.

To construct such a φ, we use the proof of Krieger’s theorem presented in [Dow11, Theorem
4.2.3], and we refer to it as Downarowicz’s proof. For each e ∈ EZ(X), the proof constructs a
Borel Z-embedding φe ∶X ′ → NZ

e on an e-measure 1 set X ′. We claim that this construction
is uniform in e in a Borel way and hence would yield X ′ and φ as above.

Our claim can be verified by inspection of Downarowicz’s proof. The proof uses the
existence of sets with certain properties and one has to check that such sets exist with the
properties satisfied for all e ∈ EZ(X) at once. For example, the set C used in [Dow11, proof
of Lemma 4.2.5] can be chosen so that for all e ∈ EZ(X), C ∩Xe has the required properties
for e (using the Shannon–McMillan–Brieman theorem). Another example is the set B used
in the proof of the same lemma, which is provided by Rohlin’s lemma. By inspection of
the proof of Rohlin’s lemma (see [Gla03, 2.1]), one can verify that we can get a Borel B
such that for all e ∈ EZ(X), B ∩Xe has the required properties for e. The sets in these two
examples are the only kind of sets whose existence is used in the whole proof; the rest of the
proof constructs the required φ “by hand”. �

Theorem 9.3 (Dichotomy I). Suppose the answer to Question 1.13 is positive and let X be
an aperiodic Borel Z-space. Then exactly one of the following holds:

(1) there exists an invariant ergodic Borel probability measure with infinite entropy;
(2) there exists a partition {Yn}n∈N of X into invariant Borel sets such that each Yn has a

finite generator.

Proof. We first show that the conditions above are mutually exclusive. Indeed, assume there
exist an invariant ergodic Borel probability measure e with infinite entropy and a partition
{Yn}n∈N of X into invariant Borel sets such that each Yn has a finite generator. By ergodicity,
e would have to be supported on one of the Yn. But Yn has a finite generator and hence
the dynamical system (Yn,Z, e) has finite entropy by the Kolmogorov–Sinai theorem (see
1.9). Thus so does (X,Z, e) since these two systems are isomorphic (modulo e-NULL),
contradicting the assumption on e.

Now we prove that at least one of the conditions holds. Assume that there is no invariant
ergodic measure with infinite entropy. Now, if there was no invariant Borel probability
measure at all, then, since the answer to Question 1.13 is assumed to be positive, X would
admit a finite generator, and we would be done. So assume thatMZ(X) ≠ ∅ and let {An}n≤∞
be as in Krieger’s Finite Generator Theorem 9.2. Furthermore, let ρ be the map x ↦ ex as
in the Ergodic Decomposition Theorem. Set X ′ =X ∖A∞, Y∞ = A∞, and for all n ∈ N,

Yn = {x ∈X ′ ∶ Nex = n},

where the map e ↦ Ne is as above. Note that the sets Yn are invariant since ρ is invariant,
so {Yn}n≤∞ is a countable partition of X into invariant Borel sets. Since Y∞ does not admit
an invariant Borel probability measure, by our assumption, it has a finite generator.
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Let E be the equivalence relation on X ′ defined by ρ, i.e. ∀x, y ∈X ′,

xEy⇔ ρ(x) = ρ(y).

By definition, E is a smooth Borel equivalence relation with E ⊇ EZ since ρ respects the
Z-action. Thus, by Theorem 8.12, there exists a partition P of X ′ into 4 Borel sets such
that ZP separates any two points in different E-classes.

Now fix n ∈ N and we will show that I = P ∨ {Ai}i<n is a generator for Yn. Indeed, take
distinct x, y ∈ Yn. If x and y are in different E-classes, then ZP separates them and hence
so does ZI. Thus we can assume that xEy. Then e ∶= ρ(x) = ρ(y), i.e. x, y ∈ Xe = ρ−1(e).
By the choice of {Ai}i∈N, {An ∩Xe}n<Ne is a generator for Xe and hence Z{Ai}i<Ne separates
x and y. But n = Ne by the definition of Yn, so ZI separates x and y. �

Proposition 9.4. Let X be a Borel Z-space. If X admits invariant ergodic probability
measures of arbitrarily large entropy, then it admits an invariant probability measure of
infinite entropy.

Proof. For each n ≥ 1, let µn be an invariant ergodic probability measure of entropy hµn > n2n

such that µn ≠ µm for n ≠m, and put

µ =∑
n≥1

1

2n
µn.

It is clear that µ is an invariant probability measure, and we show that its entropy hµ is
infinite using an argument pointed out by the referee of the current paper (the author’s
original argument was less general).

Claim. For any invariant probability measures ν,µ on X and c ≤ 1, if cν ≤ µ then chν ≤ hµ.

Proof of Claim. First note that the entropy of any atomic invariant probability measure ρ
is 0: indeed, such a measure is supported on countably many orbits, each of which is finite,
and hence for any partition I, the sequence hρ(⋁

n
i=−n T iI) converges as n→∞; therefore, the

time-average entropy (see (1.7)) is 0. It follows now that the nonatomic parts of ν,µ do not
contribute in the calculation of their entropies, so we may assume without loss of generality
that ν,µ are nonatomic.

The function g(x) = −x log2 x used in the calculation of the entropy is convex on (0,1) and
satisfies cg(x) ≤ g(cx) ≤ g(y) for 0 < x, y < 1/2 with cx ≤ y. In (1.6), x is equal to the measure
of a piece of a partition; since, by the convexity of g(x), refining a partition only increases its
static entropy and our measures are nonatomic, in (1.8) we can take the supremum merely
over the partitions with pieces of measure less than 1/2. This yields chν ≤ hµ. ⊣

For any n ≥ 1, we have 1
2nµn ≤ µ, so the above claim gives hµ ≥ 1

2nhµn ≥ n and hence
hµ =∞. �

Theorem 9.5 (Dichotomy II). Suppose the answer to Question 1.13 is positive and let X
be an aperiodic Borel Z-space. Then exactly one of the following holds:

(1) there exists an invariant Borel probability measure with infinite entropy;
(2) X admits a finite generator.

Proof. The Kolmogorov–Sinai theorem implies that the conditions are mutually exclusive,
and we prove that at least one of them holds. Assume that there is no invariant measure
with infinite entropy. If there was no invariant Borel probability measure at all, then, by our
assumption, X would admit a finite generator. So assume thatMZ(X) ≠ ∅ and let {An}n≤∞
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be as in Krieger’s Finite Generator Theorem 9.2. Furthermore, let ρ be the map x ↦ ex as
in the Ergodic Decomposition Theorem. Set X ′ =X ∖A∞ and Xe = ρ−1(e), for all e ∈ EZ(X).

By our assumption, A∞ admits a finite generator P. Also, by Proposition 9.4, there is
N ≥ 1 such that for all e ∈ EZ(X), Ne ≤ N and hence Q ∶= {An}n<N is a finite generator for
Xe; in particular, Q is a partition of X ′. Let E be the following equivalence relation on X:

xEy⇔ (x, y ∈ A∞) ∨ (x, y ∈X ′ ∧ ρ(x) = ρ(y)).

By definition, E is a smooth equivalence relation with E ⊇ EZ since ρ respects the Z-action
and A∞ is Z-invariant. Thus, by Theorem 8.12, there exists a partition J of X into 4 Borel
sets such that ZJ separates any two points in different E-classes.

We now show that I ∶= ⟨J ∪ P ∪ Q⟩ is a generator. Indeed, fix distinct x, y ∈ X. If x
and y are in different E-classes, then ZJ separates them. So we can assume that xEy. If
x, y ∈ A∞, then ZP separates x and y. Finally, if x, y ∈ X ′, then x, y ∈ Xe, where e = ρ(x)
(= ρ(y)), and hence ZQ separates x and y. �

Remark 9.6. It is likely that the above dichotomies are also true for any amenable group
using a uniform version of Krieger’s theorem for amenable groups (see [DP02]), but the
author has not checked the details.

10. Finite generators on comeager sets

This section is devoted to the proof of the following:

Theorem 10.1. Any aperiodic Polish G-space admits a 4-generator on an invariant comea-
ger set.

Throughout this section, let X be an aperiodic Polish G-space. We use the notation ∀∗x
to mean “for comeager many x”.

Having advertised the Kuratowski–Ulam method in the introduction, let us point out that
a “blind” application of it would not give us the statement of the above theorem. Indeed,
assume for a moment that we have found a parametrized construction of finite partitions
Pα, for α ∈ NN, and let

Φ(Pα, x, y) ∶⇔ “if x ≠ y, then GPα separates x and y”.

If we apply the Kuratowski–Ulam method to this Φ, we will get that for comeager many
α ∈ NN, we have:

∀∗(x, y) ∈X2 Φ(Pα, x, y),

while we want a comeager set D ⊆X such that

∀(x, y) ∈D2 Φ(Pα, x, y).

The problem is that a 2-dimensional comeager set may not contain a square of a 1-dimensional
comeager set. To get around this, we transform our 2-dimensional problem into two 1-
dimensional problems, and here is the first of them:

Lemma 10.2. There exists A ∈ B(X) such that G⟨A⟩ separates points in each orbit of a
comeager G-invariant set D, i.e. for each x ∈ D, the restriction of the coding map f⟨A⟩ to
[x]G is one-to-one.
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Proof. Fix a countable basis {Un}n∈N for X with U0 = ∅ and let {An}n∈N be a partition of X
provided by Lemma 8.1. For each α ∈ N (the Baire space), define

Bα = ⋃
n∈N

(An ∩Uα(n)).

Claim. ∀∗α ∈ N∀∗z ∈X∀x, y ∈ [z]G(x ≠ y⇒ ∃g ∈ G(gx ∈ Bα⇎ gy ∈ Bα)).

Proof of Claim. By Kuratowski–Ulam, it is enough to show the statement with places of the
quantifiers ∀∗α ∈ N and ∀∗z ∈X switched. Also, since orbits are countable and a countable
intersection of comeager sets is comeager, we can also switch the places of the quantifiers
∀∗α ∈ N and ∀x, y ∈ [z]G. Thus we fix z ∈ X and x, y ∈ [z]G with x ≠ y and show that
C = {α ∈ N ∶ ∃g ∈ G (gx ∈ Bα⇎ gy ∈ Bα)} is dense open.

To see that C is open, take α ∈ C and let g ∈ G be such that gx ∈ Bα ⇎ gy ∈ Bα. Let
n,m ∈ N be such that gx ∈ An and gy ∈ Am. Then for all β ∈ N with β(n) = α(n) and
β(m) = α(m), we have gx ∈ Bβ⇎ gy ∈ Bβ. But the set of such β is open in N and contained
in C.

For the density of C, let s ∈ N<N and set n = ∣s∣. Since An is a complete section, ∃g ∈ G
with gx ∈ An. Let m ∈ N be such that gy ∈ Am. Take any t ∈ Nmax{n,m}+1 with t ⊒ s satisfying
the following condition:
Case 1: n >m. If gy ∈ Us(m) then set t(n) = 0. If gy ∉ Us(m), then let k be such that gx ∈ Uk
and set t(n) = k.
Case 2: n ≤m. Let k be such that gx ∈ Uk but gy ∉ Uk and set t(n) = t(m) = k.

Now it is easy to check that in any case gx ∈ Bα⇎ gy ∈ Bα, for any α ∈ N with α ⊒ t, and
so α ∈ C and α ⊒ s. Hence C is dense. ⊣

By the claim, ∃α ∈ N such that

D ∶= {z ∈X ∶ ∀x, y ∈ [z]G with x ≠ y, G⟨Bα⟩ separates x and y}

is comeager and clearly invariant, which completes the proof. �

The reader is invited to compare this last lemma with Theorem 8.7 and Corollary 8.9. In
fact, in the proof of Theorem 10.1 below, we only use Lemma 10.2 to deduce the conclusion
of Theorem 8.7 modulo MEAGER, which we could also deduce from Theorem 8.7 itself.
However, we still included Lemma 10.2 here to keep this section self-contained, and also
because its proof is easier than that of Theorem 8.7.

Proof of Theorem 10.1. Let A and D be provided by Lemma 10.2. Throwing away an invari-
ant meager set from D, we may assume that D is dense Gδ and hence Polish in the relative
topology. Therefore, we may assume without loss of generality that X =D.

Thus A aperiodically separates X and hence, by Proposition 8.3, there is a partition
{An}n∈N of X into FA-invariant Borel complete sections (the latter could be inferred directly
from Corollary 8.10 without using Lemma 10.2). Fix an enumeration G = {gn}n∈N and a
countable basis {Un}n∈N for X. Denote N2 = (N2)N and for each α ∈ N2, define

Bα = ⋃
n≥1

(An ∩ g(α(n))0U(α(n))1).

Claim. ∀∗α ∈ N2∀∗x ∈X∀l ∈ N∃n, k ∈ N(α(n) = (k, l) ∧ gkx ∈ An).

Proof of Claim. By Kuratowski–Ulam, it is enough to show that ∀x ∈ X and ∀l ∈ N,
C = {α ∈ N2 ∶ ∃k,n ∈ N(α(n) = (k, l) ∧ gkx ∈ An)} is dense open.
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To see that C is open, note that for fixed n, k, l ∈ N , α(n) = (k, l) is an open condition in
N2.

For the density of C, let s ∈ (N2)<N and set n = ∣s∣. Since An is a complete section, ∃k ∈ N
with gkx ∈ An. Any α ∈ N2 with α ⊒ s and α(n) = (k, l) belongs to C. Hence C is dense. ⊣

By the claim, there exists α ∈ N2 such that Y = {x ∈ X ∶ ∀l ∈ N ∃k,n ∈ N (α(n) =
(k, l) ∧ gkx ∈ An)} is comeager.

Let I = ⟨A,Bα⟩, and so ∣I ∣ ≤ 4. We show that I is a generator on Y . Fix distinct
x, y ∈ Y . If x and y are separated by G⟨A⟩ then we are done, so assume otherwise, that
is xFAy. Let l ∈ N be such that x ∈ Ul but y ∉ Ul. Then there exists k,n ∈ N such that
α(n) = (k, l) and gkx ∈ An. Since gkxFAgky and An is FA-invariant, gky ∈ An. Furthermore,
since gkx ∈ An ∩ gkUl and gky ∉ An ∩ gkUl, gkx ∈ Bα while gky ∉ Bα. Hence G⟨Bα⟩ separates
x and y, and thus so does GI. Therefore I is a generator. �

Corollary 10.3. Let X be a Polish G-space. If X is aperiodic, then it is 2-compressible
modulo MEAGER.

Proof. By [KM04, Theorem 13.1], X is compressible modulo MEAGER. Also, by the above
theorem, X admits a 4-generator modulo MEAGER. Thus Proposition 3.17 implies that X
is 2-compressible modulo MEAGER. �

11. The nonexistence of non-meager weakly wandering sets

Throughout this section, let X be a Polish Z-space and T be the homeomorphism corre-
sponding to the action of 1 ∈ Z.

11.A. An arithmetic criterion.

Observation 11.1. Let A ⊆X be weakly wandering with respect to H ⊆ Z. Then A is weakly
wandering with respect to

(a) any subset of H;
(b) r +H, ∀r ∈ Z;
(c) −H.

Definition 11.2. Let d ≥ 1 and F = {ni}i<k ⊆ Z, where n0 < n1 < ... < nk−1 are increasing. F
is called d-syndetic if ni+1 − ni ≤ d for all i < k − 1. In this case we say that the length of F
is nk−1 − n0 and denote it by ∣∣F ∣∣.

Lemma 11.3. Let d ≥ 1 and F ⊆ Z be a d-syndetic set. For any H ⊆ Z, if ∣H ∣ = d + 1 and
max(H) −min(H) < ∣∣F ∣∣ + d, then F is not weakly wandering with respect to H (viewing Z
as a Z-space).

Proof. Using (b) and (c) of Observation 11.1, we may assume that H is a set of non-negative
numbers containing 0. Let F = {ni}i<k with ni increasing.

Claim. ∀h ∈H, (h + F ) ∩ [nk−1, nk−1 + d) ≠ ∅.

Proof of Claim. Fix h ∈H. Since 0 ≤ h < ∣∣F ∣∣ + d,

n0 + h < n0 + (∣∣F ∣∣ + d) = nk−1 + d.

We prove that there is 0 ≤ i ≤ k − 1 such that ni + h ∈ [nk−1, nk−1 + d). Otherwise, because
ni+1 − ni ≤ d, one can show by induction on i that ni + h < nk−1,∀i < k, contradicting
nk−1 + h ≥ nk−1. ⊣
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Now ∣H ∣ = d + 1 > d = ∣Z ∩ [nk−1, nk−1 + d)∣, so by the Pigeon Hole Principle there exists
h ≠ h′ ∈H such that (h+F )∩(h′+F ) ≠ ∅ and hence F is not weakly wandering with respect
to H. �

Definition 11.4. Let d, l ≥ 1 and A ⊆X. We say that A contains a d-syndetic set of length
l if there exists x ∈ X such that {n ∈ Z ∶ T n(x) ∈ A} contains a d-syndetic set of length ≥ l.
This is equivalent to ⋂n∈F T n(A) ≠ ∅, for some d-syndetic set F ⊆ Z of length ≥ l.

For A ⊆X, define sA ∶ N→ N ∪ {∞} by

d↦ sup{l ∈ N ∶ A contains a d-syndetic set of length l}.

Also, for infinite H ⊆ Z, define a width function wH ∶ N→ N by

d↦min{max(H ′) −min(H ′) ∶H ′ ⊆H ∧ ∣H ′∣ = d + 1}.

Proposition 11.5. If A ⊆ X is weakly wandering with respect to an infinite H ⊆ Z then
∀d ∈ N, sA(d) + d ≤ wH(d).

Proof. Let H be an infinite subset of Z and A ⊆ X, and assume that sA(d) + d > wH(d) for
some d ∈ N. Thus ∃x ∈X such that {n ∈ Z ∶ T n(x) ∈ A} contains a d-syndetic set F of length
l with l+d > wH(d) and ∃H ′ ⊆H such that ∣H ′∣ = d+1 and max(H ′)−min(H ′) = wH(d). By
Lemma 11.3 applied to F and H ′, F is not weakly wandering with respect to H ′ and hence
neither is A. Thus A is not weakly wandering with respect to H. �

Corollary 11.6. If A ⊆ X contains arbitrarily long d-syndetic sets for some d ≥ 1, then it
is not weakly wandering.

Proof. If A and d are as in the hypothesis, then sA(d) =∞ and hence, by Proposition 11.5,
A is not weakly wandering with respect to any infinite H ⊆ Z. �

Theorem 11.7. Let X be a Polish G-space. Suppose for every nonempty open V ⊆ X
there exists d ≥ 1 such that V contains arbitrarily long d-syndetic sets, i.e. ⋂n∈F T n(V ) ≠ ∅
for arbitrarily long d-syndetic sets F ⊆ Z. Then X does not admit a non-meager Baire
measurable weakly wandering subset.

Proof. Let A be a non-meager Baire measurable subset of X. By the Baire property, there
exists a nonempty open V ⊆X such that A is comeager in V . By the hypothesis, there exists
arbitrarily long d-syndetic sets F ⊆ Z such that ⋂n∈F T n(V ) ≠ ∅. Since A is comeager in V
and T is a homeomorphism, ⋂n∈F T n(A) is comeager in ⋂n∈F T n(V ), and hence ⋂n∈F T n(A) ≠
∅ for any F for which ⋂n∈F T n(V ) ≠ ∅. Thus A also contains arbitrarily long d-syndetic sets
and hence, by Corollary 11.6, A is not weakly wandering. �

Corollary 11.8. Let X be a Polish G-space. Suppose for every nonempty open V ⊆X there
exists d ≥ 1 such that {T nd(V )}n∈N has the finite intersection property. Then X does not
admit a non-meager Baire measurable weakly wandering subset.

Proof. Fix nonempty open V ⊆ X and let d ≥ 1 such that {T nd(V )}n∈N has the finite inter-
section property. Then for every N , F = {kd ∶ k ≤ N} is a d-syndetic set of length Nd and
⋂n∈F T n(V ) ≠ ∅. Thus Theorem 11.7 applies. �
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11.B. A negative answer to the Eigen–Hajian–Nadkarni question.

Lemma 11.9. Let X be a generically ergodic Polish G-space. If there is a non-meager Baire
measurable locally weakly wandering subset then there is a non-meager Baire measurable
weakly wandering subset.

Proof. Let A be a non-meager Baire measurable locally weakly wandering subset. By generic
ergodicity, we may assume that X = [A]G. Throwing away a meager set from A we can
assume that A is Gδ. Then, by (d) of Proposition 7.4, there exists a σ(Σ1

1)-measurable (and
hence Baire measurable) G-invariant travel guide γ ∶ A→ GN. By generic ergodicity, γ must
be constant on a comeager set, i.e. there is (gn)n∈N ∈ GN such that Y ∶= γ−1((gn)n∈N) is
comeager. But then W ∶= A ∩ Y is non-meager and is weakly wandering with respect to
{gn}n∈N. �

Let X = {α ∈ 2N ∶ α has infinitely many 0-s and 1-s} and T be the odometer transforma-
tion on X. We will refer to this Z-space as the odometer space.

Corollary 11.10. The odometer space does not admit a non-meager Baire measurable locally
weakly wandering subset.

Proof. Let {Us}s∈2<N be the standard basis. Then for any s ∈ 2<N, T d(Us) = Us, where d = 2∣s∣.
Thus {T nd(Us)}n∈N has the finite intersection property, in fact ⋂n∈N T nd(Us) = Us. Hence,
we are done by Corollary 11.8 and Lemma 11.9. �

The following corollary shows the failure of the analogue of the Hajian–Kakutani–Itô
theorem in the context of Baire category as well as gives a negative answer to Question 1.22.

Corollary 11.11. There exists a generically ergodic Polish Z-space Y (namely an invariant
dense Gδ subset of the odometer space) with the following properties:

(i) there does not exist an invariant Borel probability measure on Y ;
(ii) there does not exist a non-meager Baire measurable locally weakly wandering set;

(iii) there does not exist a Baire measurable countably generated partition of Y into invariant
sets, each of which admits a Baire measurable weakly wandering complete section.

Proof. By the Kechris–Miller theorem (see 1.20), there exists an invariant dense Gδ subset
Y of the odometer space that does not admit an invariant Borel probability measure. Now
(ii) is asserted by Corollary 11.10. By generic ergodicity of Y , for any Baire measurable
countably generated partition of Y into invariant sets, one of the pieces of the partition has
to be comeager. But then that piece does not admit a Baire measurable weakly wandering
complete section since otherwise it would be non-meager, contradicting (ii). �
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