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Abstract. Recently the breakthrough method of hypergraph containers, developed inde-
pendently by Balogh, Morris, and Samotij [1] as well as Saxton and Thomason [12], has been
used to study sparse random analogues of a variety of classical problems from combinatorics
and number theory. The previously known proofs of the containers theorem use the so-called
scythe algorithm—an iterative procedure that runs through the vertices of the hypergraph.
(Saxton and Thomason [13] have also proposed an alternative, randomized construction
in the case of simple hypergraphs.) Here we present the first known deterministic proof of
the containers theorem that is not algorithmic, i.e., it requires no induction on the vertex
set. This proof is less than 4 pages long while being entirely self-contained. Although our
proof is completely elementary, it was inspired by considering hypergraphs in the setting of
nonstandard analysis, where there is a notion of dimension capturing the logarithmic rate
of growth of finite sets.

1. Introduction

Hypergraph containers theorems. An important and extremely active line of research in
recent years, especially in combinatorics and number theory, is extending classical results
to the so-called “sparse random setting.” One breakthrough tool for obtaining such results
is the method of hypergraph containers developed independently by Balogh, Morris, and
Samotij [1] as well as by Saxton and Thomason [12].

The hypergraph containers theorem gives a tool for analyzing the structure of all the
independent subsets in a hypergraph by “capturing” each independent set in one of a
small number of “containers.” Let H be a k-uniform hypergraph with n vertices and
n1+(k−1)δ edges. In general, H can have close to 2n independent sets, for instance, when
all the edges of H span only a small portion of its vertex set. To avoid this, one considers
homogeneous hypergraphs, i.e., those in which the degree of a vertex cannot significantly
exceed the average value n(k−1)δ, and similar upper bounds hold for the codegrees of the
sets of ` < k vertices; for details, see Definition 4. According to the containers theorem, if
H is sufficiently homogeneous, then each independent set contains a fingerprint, which is a
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subset of size roughly n1−δ. Furthermore, each fingerprint F determines a container C(F)
of size less than (1−α)n, where α is a positive constant, with the property that if F is a
fingerprint of an independent set I , then I ⊆ C(F). Each container can host at most 2(1−α)n

independent sets, and the number of containers is bounded by the number of fingerprints,
which is at most 2o(n), so the total number of independent sets must be much smaller than
2n. Note that in this calculation we still used the trivial upper bound 2(1−α)n on the number
of independent sets inside a given container; in practice, the above approach is usually
iterated, leading to particularly strong results.

The containers method has been used to prove (or reprove) sparse versions of theorems
originally established for dense hypergraphs; see [1, 12] and the survey [2]. For example,
Szemerédi’s theorem [15] in number theory states that for every k ∈N, the largest subset
of [n] ..= {1, . . . ,n} which does not contain a k-term arithmetic progression (k-AP-free) is
very small, having o(n) elements. This classical result implies that the number of k-AP-
free subsets of [n] is also small, namely at most 2o(n). Considering the hypergraph with
vertex set [n] whose edges are the k-term arithmetic progressions, the containers method
leads to a new combinatorial proof [1, 12] of a stronger statement known as the random
sparse version of Szemerédi’s theorem, which was originally obtained by Schacht [14] and,
independently, by Conlon and Gowers [3].

The statements and proofs of the core version of the containers theorem originally
appeared in [1, Proposition 3.1] and [12, Theorem 3.4]. We state it here as Theorem 8. Our
main result is a new proof of this theorem, whose advantages are described below.

Our proof. All previously known proofs of the containers theorem are based on the so-
called scythe algorithm—in other words, they use induction on the number of vertices
of the hypergraph. (In [13], a different, randomized approach was developed for simple
hypergraphs, i.e., those in which every pair of vertices lies in at most one edge.) In contrast
to that, our proof is not algorithmic and provides a deterministic way of building containers
in a single step (or, rather, k steps, since it still involves induction on k, the uniformity of
the hypergraph). It is also conceptually transparent and rather short—under 4 pages.

Our proof was inspired by an attempt to reprove the containers theorem in the setting of
nonstandard analysis, i.e., for ultraproducts of finite hypergraphs. Of course, the theorem
for ultraproducts follows from that for finite hypergraphs via the transfer principle, but
the present authors were hoping to find a direct proof that would take advantage of the
notion of dimension available in the ultraproduct that captures the logarithmic rate of
growth. However, it turned out that our approach in the nonstandard setting translated
into an even more concise proof for finite hypergraphs, to which we devote the current
paper (abandoning ultraproducts altogether).

Organization. The rest of this paper is organized as follows. Section 2 establishes standard
hypergraph notation and terminology. Section 3 begins with our definitions of a homogene-
ous hypergraph and a print/container pair, and ends with the statement of the containers
theorem in these terms, namely Theorem 8. In Section 4, we sketch the idea behind our
proof inspired by nonstandard analysis. Finally, our proof of Theorem 8 is presented in
Section 5.
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2. Basic notation and terminology

The set N of natural numbers includes 0 and we denote N
+ ..= N \ {0}. For a set X and

k ∈N+, we call a k-element subset of X a k-edge and denote the set of all k-edges by [X]k.
We refer to a subset H ⊆ [X]k as a k-uniform hypergraph (on X).

A set I ⊆ X is said to be H-independent if H ∩ [I]k = ∅ and we denote

IX(H) ..= the set of all H-independent subsets of X.

Remark 1. Note that [X]1 is the set of all singletons of X, so for any 1-hypergraph H ⊆ [X]1,
H-independent subsets of X are precisely those that are disjoint from

⋃
H .

Notation 2. Let X be a finite set, k ∈N+, H ⊆ [X]k, and ` ∈ {1, . . . , k − 1}.
• For U ⊆ [X]`, V ⊆ [X]k−`, we denote

[U,V ]H ..= {e ∈H : e = u ∪ v for some u ∈U and v ∈ V } ,

HU ..=
{
v ∈ [X]k−` : u ∪ v ∈H for some u ∈U

}
,

We refer toHU as the fiber ofH overU and ifU = {u}, we writeHu instead ofHU . (Another
common term for Hu is the link graph of u.)
• For each u ∈ [X]`, we denote degH (u) ..= |Hu |.
• We put ∆`(H) ..= maxu∈[X]` degH (u).

Notation 3. For sets A,B and a relation R ⊆ A×B, we denote

dom(R) ..= {a ∈ A : ∃b ∈ B with aRb}
im(R) ..= {b ∈ B : ∃a ∈ A with aRb}

and refer to these sets, respectively, as the domain and the image of R.

3. Statement of the containers theorem

Throughout, let X denote a finite nonempty set and k ∈N+.

Definition 4. Let H ⊆ [X]k and δ ∈ [0,1].
(4.a) We define the logarithmic degree of H as

δX(H) ..= max
1≤`<k

1
k − `

· log|X |∆`(H).

In other words, δX(H) is the least δ ∈ [0,1] such that ∆`(H) ≤ |X |(k−`)δ for all ` ∈
{1, . . . , k − 1}.

(4.b) We say that H is δ-bounded if δX(H) ≤ δ.

(4.c) We let |H |δ denote the maximum size of a δ-bounded subhypergraph of H , i.e.

|H |δ ..= max
{
|H ′ | :H ′ ⊆H and H ′ is δ-bounded

}
.

(4.d) For ε > 0, we say that H is (δ,ε)-homogeneous if it is δ-bounded and log|X | |H | ≥
1 + (k − 1)δ − ε.

As the name suggests, (δ,ε)-homogeneity implies that H is “close to evenly distributed,”
in the sense that for most x ∈ X, log|X | |Hx| is close to (k − 1)δX(H).

Definition 5. Let π ∈ [0,1].
3



• A π-fingerprint (in X) is a subset F ⊆ X with log|X | |F| ≤ π.
• A (π,k)-print (in X) is a sequence F ..= (Fi)0≤i<` of π-fingerprints (in X), where ` ≤ k − 1.

We put
⋃

F ..=
⋃
i<` Fi and denote the set of all (π,k)-prints by F k

π(X).

Remark 6. In the definition of a (π,k)-print F , it is possible that ` = 0 and F = ∅.

For σ ∈ [0,1], we denote Pσ (X) ..=
{
C ⊆ X : log|X | |X \C| ≥ 1− σ

}
.

Definition 7. Let k ≥ 1, H ⊆ [X]k, π,σ ∈ [0,1]. For relations ↘⊆ IX(H) × F k
π(X) and

↗⊆ F k
π(X)×P(X), the pair (↘,↗) is called a (π,σ )-print/container pair for H if

(7.i) dom(↘) = IX(H);

(7.ii) dom(↗) ⊇ im(↘);

(7.iii) for each I ∈ IX(H), F ∈ F k
π(X), and C ∈P(H), if I ↘ F ↗ C, then⋃

F ⊆ I ⊆
⋃

F ∪C;

(7.iv) im(↗) ⊆Pσ (X) — we refer to the sets in im(↗) as containers.

Our main result is a new proof of the following version of the containers theorem:

Theorem 8. For any k ∈ N
+, π ∈ [0,1], and ε > 0, putting δ ..= 1 − π and σ ..= 3k−1ε, the

following holds: For any finite nonempty set X with

ε ≥ 2k log|X |2 and π ≥ (k − 1)log|X |2,

any (δ,ε)-homogeneous hypergraph H ⊆ [X]k admits a (π,σ )-print/container pair.

Remark 9. We point out that in most applications of the above theorem, π and δ are con-
stants independent of |X |, while ε and σ are parameters of order O(log|X |2). In particular,
saying that for a container C, we have log|X | |X\C| ≥ 1−σ , usually means that |C| ≤ (1−α)|X |
for some positive constant α.

4. Idea of proof

Heuristically, we would like to talk about the “dimension” rather than the actual cardinality
of the sets appearing in the proof. If the set X has, say, dimension 1, then the sets whose
cardinality has the same “order of magnitude” as |X |, maybe |X |/2 or |X |/17, should also
have dimension 1. On the other hand, a set with size

√
|X | should have dimension 1/2,

while a set with size |X |k or
(|X |
k

)
should have dimension k. When |X | is a fixed finite number,

this is not well defined. Hence, it makes sense to take a sequence of sets Xn with |Xn| →∞,
and consider the rates of growth of various sets that appear in the proof.

This informal idea can be made rigorous by passing to the ultraproduct (as in [5, 7]) and
working with the fine pseudofinite dimension [8, 9, 10, 6], which captures this property: the
dimension of a set is essentially its “rate of growth relative to |Xn|,” and the dimension
is valued in ∗R+/N , where ∗R is the ultrapower of the real numbers and N is the convex
subgroup consisting of the “negligible” values, namely, those bounded by log|X |n for some
n ∈ N

+. (Taking the quotient by the negligible values corresponds to identifying the
dimension of Y and Z if |Y | = c|Z | for some fixed real number c.)
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We will now informally outline the proof based on the assumption that a well-behaved
notion of dimension exists. We take dX(H) to be the dimension of the value δX(H). Analo-
gous to the definitions above but for a dimension d, we say H is d-bounded if, for every
u ∈ [X]`,

dim(Hu) ≤ (k − `)d,
and define |H |d ..= max {|H ′ | :H ′ ⊆H and H ′ is d-bounded}.

Then we may attempt to prove our theorem by induction on k. Given H ⊆ [X]k and
an independent set I , we take a maximal fingerprint F ⊆ I so that HF is homogeneously
expanding, i.e.

dim(|HF |dX (H)) ≥ dim(F) + (k − 1)dX(H).

If dim(F) = 1−dX(H) then dim(|HF |dX (H)) = 1+(k−2)dX(H), soHF contains a subhypergraph
G with dX(G) = dX(H) and dim(G) = 1 + (k − 2)dX(H). Then by the inductive hypothesis,
there is a print/container pair

(
↘? ,?↗

)
for G; using this pair we proceed to define a

print/container pair for H as follows. Put I ↘ (F,F1, . . . ,F`−1) whenever I↘? (F1, . . . ,F`−1),
and note that I , being G-independent, must admit such (F1, . . . ,F`−1). As for the container
relation, we put (F0,F1, . . . ,F`−1)↗ C whenever (F1, . . . ,F`−1) ?↗C. Verifying that this works
is straightforward.

Let us now suppose that dim(F) < 1− dX(H). Then the maximality of F guarantees that
for any x ∈ I \F,

dim(Hx \HF) < (k − 1)dX(H).
Thus, we set I ↘ (F) and (F)↗ C, where

C ..= {x ∈ X : dim(Hx \HF) < (k − 1)dX(H)} .
We certainly have F ⊆ I ⊆ C ∪F and all that remains to check is that C has codimension 1.
We observe that

H ⊆ [X,HF]H ∪ [C,Xk−1 \HF]H ∪ [X \C,Xk−1]H ,
and therefore,

dim(H) ≤max
{
dim[X,HF]H ,dim[C,Xk−1 \HF]H ,dim[X \C,Xk−1]H

}
.

But

dim[X,HF]H ≤ dim(HF) + dX(H)

= dim(F) + (k − 1)dX(H) + dX(H)

< 1− dX(H) + kdX(H)

= 1 + (k − 1)dX(H) = dim(H)

and, using the Fubini property of dimension,

dim[C,Xk−1 \HF]H ≤ dim(C) + max
x∈C

dim(Hx \HF) < 1 + (k − 1)dX(H) < dim(H).

Therefore,
dim(H) = dim[X \C,Xk−1]H ≤ dim(X \C) + (k − 1)dX(H),

which forces dim(X \C) = 1.
For formal reasons, this argument does not quite go through in the rigorous setting of

nonstandard analysis: the notion of dimension is “external” (not defined by a formula
of first-order logic), and therefore such a maximal set F need not exist; in fact it cannot

5



exist because adding one point to a set does not affect its dimension. To fix this, one has
to replace the notion of dimension with logarithmic size. This is precisely the argument
we give below, using bounds on the logarithmic sizes of sets as an approximation to the
notion of dimension.

5. Proof

This section is devoted to our proof of Theorem 8, so we let k,π,ε,δ,σ ,X and H be as in its
hypothesis and we let log stand for log|X |. We adopt the convention that log0 = −∞.

We define a (π,σ )-print/container pair by induction on k. For the base case k = 1, we let
I ↘ F exactly when F = ∅ and F ↗ C exactly when C = X \ (

⋃
H). The complement of C is⋃

H and log |
⋃
H | = log |H | ≥ 1− ε = 1− σ . The rest of the conditions clearly hold as well.

Thus, we may assume that k > 1 and that the statement is true for all 1 ≤ k′ < k.

5.I. Choice of constants. We take

• δ′ ..= δ+ log2
• π′ ..= 1− δ′

• π̃ ..= π − ε − k log2
• ε̃ ..= ε+ (k + 1)log2

• ε′ ..= 2ε+ 2k log2
• σ ′ ..= 3k−2ε′.

Note that since (k − 1)log2 ≤ π, we have (k − 2)log2 ≤ π′. Also,

ε′ = 2ε+ 2k log2 ≤ 2ε+ 2k · ε
2k
≤ 2ε+ ε = 3ε,

and hence σ ′ ≤ σ .

Definition 10. Call a π-fingerprint F expanding if

log |HF |δ′ ≥ 1 + (k − 2)δ′ − ε′.

Notice that a π-fingerprint F is expanding if and only if the fiber HF contains a (δ′, ε′)-
homogeneous subhypergraph. For each expanding π-fingerprint F, fix an arbitrary (δ′, ε′)-
homogeneous subhypergraph GF ⊆HF . By the induction hypothesis, GF admits a (π′,σ ′)-
print/container pair; fix any such (π′,σ ′)-print/container pair

(
↘F ,F↗

)
.

5.II. The print relation. Given I ∈ IX(H) and F = (F0,F1, . . . ,F`−1) ∈ F k
π(X), we set I ↘ F

to hold exactly when at least one of the following conditions holds:

Condition 11. We have ` ≥ 1, F0 is expanding, F0 ⊆ I , and I↘F0 (F1,F2, . . . ,F`−1).

Condition 12. We have ` = 1, F0 is not expanding, log |F0| < π̃, and F0 is maximal among
the π-fingerprints F that are contained in I and satisfy

log |HF |δ′ ≥ log |F|+ (k − 1)δ′ − ε̃. (13)

Remark 14. Condition 11 makes sense, since if F0 ⊆ I andG ⊆HF0
, then I is G-independent.

5.III. Condition (7.i). For a fixed I ∈ IX(H), there are two cases.
Case 1: There is an expanding π-fingerprint F ⊆ I . Since I is GF-independent, there is a
print F ′ = (F1, . . . ,F`−1) ∈ F k−1

π (X) with I↘F F ′. Therefore, taking F ..= (F,F1, . . . ,F`−1), we
see that Condition 11 holds, so I ↘ F .
Case 2: There is no expanding π-fingerprint F ⊆ I .
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Claim 15. There is a (possibly empty) set F ⊆ I with log |F| < π̃ that is maximal among the
π-fingerprints contained in I and satisfying (13).

Proof of Claim. Because F = ∅ satisfies (13), there is a maximal π-fingerprint F contained in
I satisfying (13). Then log |F| < π̃, for otherwise we have

log |HF |δ′ ≥ π̃+ (k − 1)δ′ − ε̃ = (1− δ′ − ε′) + (k − 1)δ′ = 1 + (k − 2)δ′ − ε′,

which means that F is expanding, contradicting the assumption of our case. �

The print F ..= (F), where F is given by Claim 15, satisfies Condition 12, so I ↘ F .

5.IV. The container relation. Given F = (F0,F1, . . . ,F`−1) ∈ F k
π(X) and C ∈P(X), we set

F ↗ C to hold exactly when at least one of Conditions 16 and 18 below holds.

Condition 16. We have ` ≥ 1, F0 is expanding, and (F1,F2, . . . ,F`−1) F0↗C.

To state Condition 18, we need a definition first.

Definition 17. For k′ ≥ 1, a hypergraph H ′ ⊆ [X]k
′
, 1 ≤ t < k′, and δ ∈ [0,1], let ∇δt (H ′)

denote the set of all u ∈ [X]t with logdegH ′ (u) ≥ (k′ − t)δ in H ′.

Condition 18. We have ` = 1, F0 is not expanding, and the following holds. Define

H− ..=H \ Ĥ, where Ĥ ..= [HF0
,X]H ∪

k−2⋃
t=1

[∇δt (HF0
), [X]k−t]H . (19)

Then we have
C =

{
x ∈ X : logdegH−(x) < (k − 1)δ′ − ε̃

}
. (20)

5.V. Condition (7.ii). Let F = (F0,F1, . . . ,F`−1) ∈ im(↘). It follows from Conditions 11
and 12 that ` ≥ 1.

Case 1: F0 is expanding. Then Condition 11 holds. This means that (F1,F2, . . . ,F`−1) ∈
im(↘F0 ) ⊆ dom(F0↗). Hence, for some C ∈P(X) we have (F1,F2, . . . ,F`−1) F0↗C, which yields
F ↗ C by Condition 16.

Case 2: F0 is not expanding. Then Condition 12 holds. This means that ` = 1 and there is a
(unique) set C satisfying Condition 18, so F ↗ C.

5.VI. Condition (7.iii). We fix I ∈ IX(H), F = (F0,F1, . . . ,F`−1) ∈ F k
π(X), and C ∈ P(X)

with I ↘ F ↗ C. It follows that ` ≥ 1.

Case 1: F0 is expanding. Set F ′ ..= (F1,F2, . . . ,F`−1). By the case assumption, Conditions 11
and 16 hold, so F0 ⊆ I and I↘F0 F ′ F0↗C. Therefore, (7.iii) applied to

(
↘F0 ,F0↗

)
yields⋃

F ′ ⊆ I ⊆
⋃

F ′ ∪C.

Case 2: F0 is not expanding. Then Conditions 12 and 18 hold. In particular, ` = 1. For
brevity, let F ..= F0. By Condition 12, F ⊆ I , so it remains to show that each x ∈ I\F belongs to
C. LettingH− be as in (19), we suppose towards a contradiction that x < C. By Condition 12,
F satisfies (13), so let G ⊆HF be a δ′-bounded hypergraph with log |G| ≥ log |F|+(k−1)δ′− ε̃.

Claim 21. G′ ..= G∪H−x is δ′-bounded.
7



Proof of Claim. We fix ` ∈ {1, . . . , k − 2} and u ∈ [X]` and show that logdegG′ (u) ≤ (k−1−`)δ′.
If u ∈ ∇δ` (HF) or x ∈ u, then G′u = Gu , so degG′ (u) = degG(u) ≤ |X |(k−1−`)δ′ .

Otherwise, degG′ (u) ≤ degG(u) + degH−x (u). Since u < ∇δ` (HF), degG(u) ≤ |X |(k−1−`)δ. Also,
because x < u,

degH−x (u) = degH−
(
{x} ∪u

)
≤ degH

(
{x} ∪u

)
≤ |X |(k−1−`)δ,

so degG′ (u) ≤ 2 · |X |(k−1−`)δ = |X |(k−1−`)δ′ . �

Furthermore, H− and [HF ,X]H are disjoint, in particular, H−x and HF ⊇ G are disjoint, so

|G′ | = |G|+ |H−x |[
Because x < C

]
≥ |F| · |X |(k−1)δ′−ε̃ + |X |(k−1)δ′−ε̃

= (|F|+ 1) · |X |(k−1)δ′−ε̃.

Therefore,
log

∣∣∣HF∪{x}∣∣∣δ′ ≥ log |F ∪ {x} |+ (k − 1)δ′ − ε̃,
i.e., F ∪ {x} satisfies (13). Since |X |π̃ + 1 ≤ |X |π, the set F ∪ {x} is a π-fingerprint contained in
I . This contradicts the properties of F given by Condition 12.

5.VII. Condition (7.iv). For a given C ∈ im(↗), fix any F = (F0,F1, . . . ,F`−1) ∈ F k
π(X) with

F ↗ C. It follows that ` ≥ 1.
Case 1: F0 is expanding. Then Condition 16 holds, so (F1, . . . ,F`−1) F0↗C, and thus |X \C| ≥
1− σ ′ ≥ 1− σ .
Case 2: F0 is not expanding. Then Condition 18 holds, so ` = 1 and C is defined as in (20).
For brevity, let F ..= F0.

Claim 22. log
∣∣∣[HF ,X]H

∣∣∣ ≤ log |F|+ kδ.

Proof of Claim. log
∣∣∣[HF ,X]H

∣∣∣ ≤ log |HF |+ δ ≤ log |F|+ (k − 1)δ+ δ = log |F|+ kδ. �

Claim 23. For each ` ∈ {1, . . . , k − 2}, log
∣∣∣[∇δ` (HF), [X]k−`]H

∣∣∣ ≤ log
(k−1
`

)
+ log |F|+ kδ.

Proof of Claim. Because each edge e ∈HF is counted in the degrees of at most
(k−1
`

)
-many

points in [X]`, we have that

log |∇δ` (HF)|+ (k − 1− `)δ ≤ log
∑
u∈[X]`

degHF (u) ≤ log
(
k − 1
`

)
+ log |HF |.

But log |HF | ≤ log |F|+ (k − 1)δ, so

log |∇δ` (HF)| ≤ log
(
k − 1
`

)
+ log |F|+ (k − 1)δ − (k − 1− `)δ = log

(
k − 1
`

)
+ log |F|+ `δ.

Thus,

log
∣∣∣[∇δ` (HF), [X]k−`]H

∣∣∣ ≤ log
∣∣∣∇δ` (HF)

∣∣∣+ (k − `)δ ≤ log
(
k − 1
`

)
+ log |F|+ kδ. �

Let H− and Ĥ be defined as in (19).
8



Claim 24. log |H−| ≥ 1 + (k − 1)δ − ε − log2.

Proof of Claim. It follows from the last two claims that

|Ĥ | ≤ |F| · |X |kδ +
k−2∑
`=1

(
k − 1
`

)
· |F| · |X |kδ

=
k−1∑
`=1

(
k − 1
`

)
· |F| · |X |kδ

< 2k−1 · |F| · |X |kδ,

< 2k−1 · |X |π̃ · |X |kδ

= 2k−1 · |X |π−ε−k log2 · |X |kδ

= 2k−1 · 2−k · |X |1+(k−1)δ−ε ≤ 1
2
· |H |,

so |H−| = |H | − |Ĥ | ≥ 1
2 · |H |. �

On the other hand,

log
∣∣∣[C, [X]k−1]H−

∣∣∣ < |C|+ (k − 1)δ′ − ε̃
= |C|+ (k − 1)δ+ (k − 1)log2− ε − (k + 1)log2

≤ 1 + (k − 1)δ − ε − 2log2,

and
log

∣∣∣[X \C, [X]k−1]H−
∣∣∣ ≤ log

∣∣∣[X \C, [X]k−1]H
∣∣∣ ≤ log |X \C|+ (k − 1)δ,

so,
1
4
· |X |1+(k−1)δ−ε + |X \C| · |X |(k−1)δ ≥

∣∣∣[C, [X]k−1]H−
∣∣∣+

∣∣∣[X \C, [X]k−1]H−
∣∣∣

≥ |H−| ≥ 1
2
· |X |1+(k−1)δ−ε.

Therefore, |X \C| ≥ 1
4 · |X |

1−ε, so

log |X \C| ≥ 1− ε − 2log2

≥ 1− ε − 2 · ε
2k[

Because k ≥ 2
]
> 1− 2ε > 1− σ.

The proof of Theorem 8 is now complete. �
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