Poisson-Voronoi tessellations and fixed price for higher rank lattices

McGill DDC Seminar

Amanda Wilkens
9 May 2023

University of Texas at Austin
Background
History of the IPVT

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>Budzinski, Curien, Petri</td>
<td>Description of the pointless Voronoi tessellation on \mathbb{H}^2</td>
</tr>
<tr>
<td>2023</td>
<td>D’Achille, Curien, Enriquez, Lyons, Unel</td>
<td>Construction of the ideal Poisson-Voronoi tessellation (IPVT) on \mathbb{H}^d</td>
</tr>
<tr>
<td>(soon)</td>
<td>Fraczyk, Mellick, Wilkens</td>
<td>Construction of the IPVT on a higher rank real semisimple Lie group G</td>
</tr>
</tbody>
</table>
$\frac{1}{\eta} = \text{Poisson point process on } X \text{ with intensity } \eta$

Idea for \mathbb{H}^2

IPVT construction
Horocones

We call the object on which the IPVT lives a horocone.

The horocone for $G = SL(2, \mathbb{R})$ and $X = \mathbb{H}^2$ is G modded out by the subgroup of upper triangular matrices with ones on the diagonal, equivalently $\partial X \times \mathbb{R}$, equipped with Lebesgue measure.

Theorem (FMW)

Any nonamenable locally compact second countable (lcsc) group has a horocone. $G \rtimes G$

For a semisimple real Lie group G the horocone is G/U, equivalently $\partial X \times \mathbb{R}$, equipped with a G-invariant measure unique up to scaling.

$G = SL(n, \mathbb{R}), \ P = \text{minimal parabolic of } G, \ U \leq P$
Horocone construction

Fix a basepoint $o \in X$. Let d be a G-invariant metric on X and m a G-invariant measure on X. Define the space of “distance-like” functions on X as

$$D := \text{cl}\{x \mapsto d(x, y) + t | y \in X, t \in \mathbb{R}\} \subseteq C(X).$$

We have $G \curvearrowright D$ with $gf(x) := f(g^{-1}x)$.

For $t \in \mathbb{R}$, define $\iota_t : X \to D$ by $\iota_t(x)(y) = d(x, y) - t$, where $y \in X$.

Let $\eta_t := m(B(o, t))^{-1}$ ($t \to \infty \iff \eta_t \to 0$).

Set $\mu_t := \eta_t(\iota_t)_*(m)$. (Goal: G-inv. measure on D)
Horocone construction, continued

The sequence of measures \(\{\mu_t\}_{t \in \mathbb{R}} \) has a non-zero subsequential weak-\(\ast \) limit \(\mu \) as \(t \to \infty \) whenever \((X, d) \) has exponential growth.

In particular, such a \(\mu \) exists for any nonamenable lcsc group.

Then \(\mu \) is our desired \(G \)-invariant measure on \(D \), and \((D, \mu) \) is the horocone for \(G \).
Consider $X = \mathbb{H}^2$ and a boundary point $\xi \in \partial X$.

∂X can be identified with G/P where $G = SL(2, \mathbb{R})$ and P is the minimal parabolic subgroup of G.

Define $\beta_{\gamma}(x) := \lim_{t \to \infty} d(x, \gamma(t)) - d(o, \gamma(t)) \in D$.

The boundary $\partial X = G/P$ is the corresponding equivalence class of Busemann functions. $B_{\gamma_1}(x)$ and $B_{\gamma_2}(x)$ differ by a constant G-inv. measure.

Without equivalence, we end up with $\partial X \times \mathbb{R} = G/U$, where U is the maximal unimodular subgroup of P.

Geometric intuition
Horocones and the IPVT

The G-invariant measure μ on D determines the Poisson point process on D:

The limit $\lim_{t \to 0} \Pi_{\eta_t}$ where each Π_{η_t} is a Poisson point process on X with intensity η_t converges to a Poisson point process on the horocone G/U with positive intensity.

For $x \in X$, if $\beta_{gU} \in G/U$

$$\beta_{gU}(x) = \min\{\beta_{hU}(x) | hU \text{ belongs to the Poisson on } G/U\}$$

then x lives in the IPVT cell of gU.
Cost review
How to prove G and its lattices have fixed price one

Use the following theorems from Abert, Mellick (2021):

The Poisson point process action on G has maximal cost out of all essentially free, measure-preserving actions on G.

Let Π be a Poisson point process on G and D a complete and separable metric space with a G-action. Suppose $\Phi_t(\Pi)$ is a sequence of measurable and equivariant D-valued factors of Π such that $\Phi_t(\Pi)$ weakly converges to a random process Υ on D. Then Π and $\Pi \times \Upsilon$ have the same cost.

If G has fixed price one, then so does any lattice in G.
Unbounded walls
Theorem (FMW)

For a higher rank real semisimple Lie group G, each pair of cells in its IPVT almost-surely share an unbounded wall.

Sketch of the proof

Let Π be the Poisson point process on G/U associated to the IPVT on X. Fix any two points belonging to Π; call them g_1U, g_2U. Define $W(r)$ to be set of points $x \in X$ such that:

$$\beta_{g_1U}(x) = \beta_{g_2U}(x)$$

and

$$\beta_{gU}(x) > \beta_{g_1U}(x) + r$$

for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$x \in W(r)$ belongs to ∂ only shared by cells of g_1U, g_2U.

$x \in W(r)$ only sees cells of g_1U, g_2U.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$W(r)$ only sees cells of g_1U, g_2U.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.

$\beta_{gU}(x) > \beta_{g_1U}(x) + r$ for every $gU \in \Pi \setminus \{g_1U, g_2U\}$.
Sketch of the proof, continued

Define \(W(r) \) to be set of points \(x \in X \) such that:

\[
\beta_{g_1 U}(x) = \beta_{g_2 U}(x)
\]

and

\[
\beta_{gU}(x) > \beta_{g_1 U}(x) + r \quad \text{for every} \quad gU \in \Pi \setminus \{g_1 U, g_2 U\}.
\]

Claim: \(W(r) \) is almost-surely unbounded.

We start with \(x \in X \) such that \(\beta_{g_1 U}(x) = \beta_{g_2 U}(x) \). Then we produce an unbounded set contained in \(W(r) \) from an action on \(x \).
Sketch of the proof, continued

The stabilizer subgroup $S := g_1 U g_1^{-1} \cap g_2 U g_2^{-1}$ fixes $g_1 U, g_2 U$ but mixes up almost every other point of Π.

S is non-compact only when G is higher rank.

Howe-Moore implies $\lim_{i \to \infty} \mu(B \cap s_i B) = 0$ for Borel $B \subseteq G/U$ and any escaping sequence $\{s_i\}_{i \in \mathbb{N}} \subseteq S$.

Set $B := \{gU \in G/U : \beta_g U(x) < \beta_{g_1} U(x) + r\}$. $\mu(B) < \infty$

As a consequence of the horocone construction, $\mu(B) < \infty$.

The set of points in $B \cap U$ that are "closer" to x than $B g \cap U x + r$.
Sketch of the proof, continued

By Howe-Moore, there exists a subsequence \(\{s_{i_j}\} \subseteq \{s_i\} \) such that for large enough \(j \ll k \), \(\mu(s_{i_j} B \cap s_{i_k} B) \) is arbitrarily small.

Let \(E_j \) be the event \(\{\Pi(s_{i_j} B) = 0\} \).

We can apply a version of Borel-Cantelli to conclude the \(E_j \) occur infinitely often almost-surely.

For each \(E_j \) which occurs, we have \(s_{i_j}^{-1} x \in W^\perp \). So \(W^\perp \) is unbounded almost-surely.