On the random order extension property on groups

Andrei Alpeev

Euler Institute, St Petersburg State University

November 8, 2022
Orders on groups

Definition

X a set. An order \prec is a binary relation on X s.t.:

1. $x \prec y$ implies not $y \prec x$;
2. $x \prec y$ and $y \prec z$ implies $x \prec z$.
Orders on groups

Definition

\(X \) a set. An order \(\prec \) is a binary relation on \(X \) s.t.:

1. \(x \prec y \) implies not \(y \prec x \);
2. \(x \prec y \) and \(y \prec z \) implies \(x \prec z \).

\(p\text{Ord}(X) \) - the space of all partial orders on \(X \),
Orders on groups

Definition

X a set. An order \prec is a binary relation on X s.t.:

1. $x \prec y$ implies not $y \prec x$;
2. $x \prec y$ and $y \prec z$ implies $x \prec z$.

$p\text{Ord}(X)$ - the space of all partial orders on X, $t\text{Ord}(X)$ - the space of all total orders on X.
Orders on groups

Definition
X a set. An order \(\prec \) is a binary relation on \(X \) s.t.:
1. \(x \prec y \) implies not \(y \prec x \);
2. \(x \prec y \) and \(y \prec z \) implies \(x \prec z \).

\(\text{pOrd}(X) \) - the space of all partial orders on \(X \),
\(\text{tOrd}(X) \) - the space of all total orders on \(X \).

Let \(G \) be a countable group. \(G \) acts on \(\text{pOrd}(G) \) :

\[a(g \prec) b \Leftrightarrow ag \prec bg. \]

this is called R-action (but it is a left \(G \)-action), there is also an \(L \)-action
Invariant (random) orders

Definition

A right-invariant order on G is a G-invariant point on $\text{pOrd}(G)$.
Invariant (random) orders

Definition
A right-invariant order on G is a G-invariant point on $\text{pOrd}(G)$.

Right-invariant orders \Leftrightarrow subsemigroups of without identity.
Invariant (random) orders

Definition

A right-invariant order on G is a G-invariant point on $p\text{Ord}(G)$.

Right-invariant orders \Leftrightarrow subsemigroups of without identity.

Definition

An invariant random order (IRO) is a G-invariant measure on $p\text{Ord}(G)$.
Invariant (random) orders

Definition

A right-invariant order on G is a G-invariant point on $\text{pOrd}(G)$.

Right-invariant orders \iff subsemigroups of G without identity.

Definition

An **invariant random order (IRO)** is a G-invariant measure on $\text{pOrd}(G)$.

Definition

A **group satisfies the invariant order extension property** if every partial invariant order could be extended into a total invariant order.

Theorem (Rhemtulla-Formanek, early 70's)

Torsion-free nilpotent groups have the invariant order extension property.

No longer true even for metabelian!
Invariant (random) orders

Definition
A right-invariant order on G is a G-invariant point on $\text{pOrd}(G)$.

Right-invariant orders \iff subsemigroups of without identity.

Definition
An invariant random order (IRO) is a G-invariant measure on $\text{pOrd}(G)$.

Definition
A group satisfies the invariant order extension property if every partial invariant order could be extended into a total invariant order.

Theorem (Rhemtulla-Formanek, early 70’s)
Torsion-free nilpotent groups have the invariant order extension property.
Invariant (random) orders

Definition
A right-invariant order on G is a G-invariant point on $\text{pOrd}(G)$.

Right-invariant orders \Leftrightarrow subsemigroups of without identity.

Definition
An invariant random order (IRO) is a G-invariant measure on $\text{pOrd}(G)$.

Definition
A group satisfies the invariant order extension property if every partial invariant order could be extended into a total invariant order.

Theorem (Rhemtulla-Formanek, early 70’s)
Torsion-free nilpotent groups have the invariant order extension property.
No longer true even for metabelian!
IRO-extension property

Let be X a set. Denote $\text{OrdExt}(X) \subset p\text{Ord}(X) \times t\text{Ord}(X)$ the set of all pairs (ω, ω') s.t. $\omega \in p\text{Ord}(X)$, $\omega' \in t\text{Ord}(X)$ and $\omega \subset \omega'$ (ω' extends ω).
IRO-extension property

Let be X a set. Denote $\text{OrdExt}(X) \subset \text{pOrd}(X) \times \text{tOrd}(X)$ the set of all pairs (ω, ω') s.t. $\omega \in \text{pOrd}(X)$, $\omega' \in \text{tOrd}(X)$ and $\omega \subset \omega'$ (ω' extends ω).

Definition

A group G has the IRO-extension property iff for every invariant ν on $\text{pOrd}(G)$ there is an invariant γ on $\text{OrdExt}(X)$ s.t. $\text{proj}_{\text{pOrd}(G)}(\gamma) = \nu$.

A general question: lifting invariant measures over topological extensions: $G \curvearrowright X \rightarrow Y$ Possible for all extension pairs iff G is amenable.
IRO-extension property

Let be \(X \) a set. Denote \(\text{OrdExt}(X) \subset \text{pOrd}(X) \times \text{tOrd}(X) \) the set of all pairs \((\omega, \omega')\) s.t. \(\omega \in \text{pOrd}(X) \), \(\omega' \in \text{tOrd}(X) \) and \(\omega \subset \omega' \) (\(\omega' \) extends \(\omega \)).

Definition

A group \(G \) has the IRO-extension property iff for every invariant \(\nu \) on \(\text{pOrd}(G) \) there is an invariant \(\gamma \) on \(\text{OrdExt}(X) \) s.t. \(\text{proj}_{\text{pOrd}(G)}(\gamma) = \nu \).

A general question: lifting invariant measures over topological extensions:

\[
G \curvearrowright X \quad \Downarrow \quad G \curvearrowright Y
\]
IRO-extension property

Let be X a set. Denote $\text{OrdExt}(X) \subset \text{pOrd}(X) \times \text{tOrd}(X)$ the set of all pairs (ω, ω') s.t. $\omega \in \text{pOrd}(X)$, $\omega' \in \text{tOrd}(X)$ and $\omega \subset \omega'$ (ω' extends ω).

Definition

A group G has the IRO-extension property iff for every invariant ν on $\text{pOrd}(G)$ there is an invariant γ on $\text{OrdExt}(X)$ s.t. $\text{proj}_{\text{pOrd}(G)}(\gamma) = \nu$.

A general question: lifting invariant measures over topological extensions:

$$
\begin{array}{c}
G \curvearrowright X \\
\downarrow \\
G \curvearrowright Y
\end{array}
$$

Possible for all extension pairs iff G is amenable.
Partial results

Theorem (A. - Meyerovitch - Ryu 20', Stepin? 70's)

Amenable groups have the IRO extension property.
Partial results

Theorem (A. - Meyerovitch - Ryu 20', Stepin? 70's)
Amenable groups have the IRO extension property.

Theorem (Glasner-Lin-Meyerovitch 22')
$SL_3(\mathbb{Z})$ does NOT have the IRO extension property.
Partial results

Theorem (A. - Meyerovitch - Ryu 20’, Stepin? 70’s)

Amenable groups have the IRO extension property.

Theorem (Glasner-Lin-Meyerovitch 22’)

$SL_3(\mathbb{Z})$ does *NOT* have the IRO extension property.

Counterexample: semigroup of matrices with non-negative entries generates a partial invariant order, significantly reworked argument by Witte-Morris 94’.
Main result

Theorem

Nonamenable groups do not satisfy the IRO extension property.
Main result

Theorem

Nonamenable groups do not satisfy the IRO extension property.

Thus, amenable \iff IRO extension property.
Main result

Theorem

Nonamenable groups do not satisfy the IRO extension property. Thus, amenable \Leftrightarrow IRO extension property.

Explicit set of counterexamples for the lifting problem:

$$G \curvearrowright X \quad \Downarrow \quad G \curvearrowright Y$$
Idea of proof

If $G' < G$ and G has the IRO extension property then so does G'. \

maybe F_2 has no IRO extension property?
Idea of proof

if $G' < G$ and G has the IRO extension property then so does G'.
Idea:
Idea of proof

if $G' < G$ and G has the IRO extension property then so does G'. Idea:

▶ maybe F_2 has no IRO extension property?
Idea of proof

if $G' < G$ and G has the IRO extension property then so does G'. Idea:

- maybe F_2 has no IRO extension property?
- each non-amenable group contains F_2
Idea of proof

if $G' < G$ and G has the IRO extension property then so does G'. Idea:

▶ maybe F_2 has no IRO extension property?
▶ each non-amenable group contains F_2 [Olshanski, early 80’s].
Equivalence relations

Definition

\((X, \mu)\) a standard probability space. \(E\) is a countable Borel equivalence relation:

- \(E\) is a Borel subset of \(X \times X\);
- \(E\) is an equivalence relation;
- equivalence classes of \(E\) are at most countable.
Equivalence relations

Definition
(X, μ) a standard probability space. E is a countable Borel equivalence relation:

- E is a Borel subset of $X \times X$;
- E is an equivalence relation;
- equivalence classes of E are at most countable.

Definition
A countable Borel equivalence relation E is measure-preserving if every partial Borel map ψ whose graph is a subset of E, is measure-preserving.
Equivalence relations

Definition

(X, μ) a standard probability space. E is a countable Borel equivalence relation:

- E is a Borel subset of $X \times X$;
- E is an equivalence relation;
- equivalence classes of E are at most countable.

Definition

A countable Borel equivalence relation E is measure-preserving if every partial Borel map ψ whose graph is a subset of E, is measure-preserving.

Main example - orbit equivalence relations of measure-preserving actions of countable group on a standard probability space:

$$xEy \text{ iff } y = gx \text{ for some } g \in G.$$
Equivalence relations

Definition

\((X, \mu)\) a standard probability space. \(E\) is a countable Borel equivalence relation:

- \(E\) is a Borel subset of \(X \times X\);
- \(E\) is an equivalence relation;
- equivalence classes of \(E\) are at most countable.

Definition

A countable Borel equivalence relation \(E\) is measure-preserving if every partial Borel map \(\psi\) whose graph is a subset of \(E\), is measure-preserving.

Main example - orbit equivalence relations of measure-preserving actions of countable group on a standard probability space:

\[xEy \text{ iff } y = gx \text{ for some } g \in G.\]

Equivalence relations are high-level analogs of groups.
Theorem (Gaboriau-Lyons 09’)

Let G be a non-amenable group. There is an essentially free pmp action of G with orbit equivalence relation E_2 and an essentially free pmp action of F_2 on the same standard probability space with orbit equivalence relation E_1 s.t. $E_1 \subset E_2$.
Theorem (Gaboriau-Lyons 09’)

Let G be a non-amenable group. There is an essentially free pmp action of G with orbit equivalence relation E_2 and an essentially free pmp action of F_2 on the same standard probability space with orbit equivalence relation E_1 s.t. $E_1 \subset E_2$.

Some applications:

- Dixmier problem for lamplighters over non-amenable groups [Monod-Ozawa 09’] ;
Gaboriau-Lyons theorem

Theorem (Gaboriau-Lyons 09’)

Let G be a non-amenable group. There is an essentially free pmp action of G with orbit equivalence relation E_2 and an essentially free pmp action of F_2 on the same standard probability space with orbit equivalence relation E_1 s.t. $E_1 \subseteq E_2$.

Some applications:

- Dixmier problem for lamplighters over non-amenable groups [Monod-Ozawa 09’] ;
- Ulam non-stability for lamplighters over non-amenable groups [A.22’].
IROs on equivalence relations

$M(X)$ - the space of all prob. measures on X.
IROs on equivalence relations

\[M(X) \] - the space of all prob. measures on \(X \).

Definition

Let \(E \) be a measure preserving Borel equivalence relation on a standard probability space \((X, \mu) \). An IRO on \(E \) is a map \(f \) s.t.

1. \(f(x) \in M(pOrd([x])_E) \) for all \(x \in X \);
2. \(f(x) = f(y) \) for a.e. \(x \in X \) and all \(y \in x^E \);
3. \(\text{proj}_{pOrd([x])_E}(f(x)) = f(x) \) for a.e. \(x \in X \).

Definition

\(E \) has the IRO extension property if for every IRO \(f \) there is a map \(t \) s.t.

1. \(t(x) \in M(OrdExt([x])_E) \);
2. \(t(x) = t(y) \) for a.e. \(x \in X \) and all \(y \in x^E \);
3. \(\text{proj}_{pOrd([x])_E}(t(x)) = f(x) \) for a.e. \(x \in X \).
IROs on equivalence relations

$M(X)$ - the space of all prob. measures on X.

Definition

Let E be a measure preserving Borel equivalence relation on a standard probability space (X, μ). An IRO on E is a map f s.t.

1. $f(x) \in M(pOrd([x]_E))$ for all $x \in X$;
2. $f(x) = f(y)$ for a.e. $x \in X$ and all yEx.

Definition

E has the IRO extension property if for every IRO f there is a map t s.t.

1. $t(x) \in M(OrdExt([x]_E))$;
2. $t(x) = t(y)$ for a.e. $x \in X$ and all yEx;
3. $\text{proj}_{pOrd([x]_E)}(t(x)) = f(x)$ for a.e. $x \in X$.

IROs on equivalence relations

$M(X)$ - the space of all prob. measures on X.

Definition

Let E be a measure preserving Borel equivalence relation on a standard probability space (X, μ). An IRO on E is a map f s.t.

1. $f(x) \in M(\text{pOrd}([x]_E))$ for all $x \in X$;
2. $f(x) = f(y)$ for a.e. $x \in X$ and all $y \in [x]_E$.

Definition

E has the IRO extension property if for every IRO f there is a map t s.t.
IROs on equivalence relations

$M(X)$ - the space of all prob. measures on X.

Definition

Let E be a measure preserving Borel equivalence relation on a standard probability space (X, μ). An IRO on E is a map f s.t.

1. $f(x) \in M(p\text{Ord}([x]_E))$ for all $x \in X$;
2. $f(x) = f(y)$ for a.e. $x \in X$ and all yEx.

Definition

E has the IRO extension property if for every IRO f there is a map t s.t.

1. $t(x) \in M(\text{OrdExt}([x]_E))$;
2. $t(x) = t(y)$ for a.e. $x \in X$ and all yEx;
3. $\text{proj}_{p\text{Ord}([x]_E)}(t(x)) = f(x)$ for a.e. $x \in X$.
Lemma

Let $E_1 \subseteq E_2$ be two equivalence relations. If E_2 has the IRO extension property then E_1 has the IRO extension property.

Proof.
Induction for equiv. rel.

Lemma

Let $E_1 \subseteq E_2$ be two equivalence relations. If E_2 has the IRO extension property then E_1 has the IRO extension property.

Proof.

Let f be an IRO on E_1.
Lemma
Let $E_1 \subset E_2$ be two equivalence relations. If E_2 has the IRO extension property then E_1 has the IRO extension property.

Proof.
Let f be an IRO on E_1.
There is an IRO f_2 on E_2 s.t. $f_2(x)|_{[x]_{E_1}} = f(x)$ for a.e. $x \in X$.

Induction for equiv. rel.
Lemma

Let $E_1 \subset E_2$ be two equivalence relations. If E_2 has the IRO extension property then E_1 has the IRO extension property.

Proof.
Let f be an IRO on E_1.
There is an IRO f_2 on E_2 s.t. $f_2(x)|_{[x]_{E_1}} = f(x)$ for a.e. $x \in X$.
Apply the extension property for f_2 and get t_2.
Lemma

Let \(E_1 \subseteq E_2 \) be two equivalence relations. If \(E_2 \) has the IRO extension property then \(E_1 \) has the IRO extension property.

Proof.

Let \(f \) be an IRO on \(E_1 \).

There is an IRO \(f_2 \) on \(E_2 \) s.t. \(f_2(x)|_{[x]_{E_1}} = f(x) \) for a.e. \(x \in X \).

Apply the extension property for \(f_2 \) and get \(t_2 \).

Restrict \(t_2(x) \) to \([x]_{E_1}\) for each \(x \) to get \(t \) for \(f \).
Lemma

Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space.
Lemma
Let E be an orbit equivalence relation of an essentially free action $G \acts (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.
Lemma
Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.
IROs on E correspond to joinings of $G \curvearrowright (X, \mu)$ and $G \curvearrowright \text{pOrd}(G)$.
Lemma
Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.
IROs on E correspond to joinings of $G \curvearrowright (X, \mu)$ and $G \curvearrowright \text{pOrd}(G)$.
IRO extension property for groups implies that for equiv.:
Let ν be a measure on $\text{pOrd}(G)$.

Lemma
Let E be an orbit equivalence relation of an essentially free action $G \rtimes (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.
IROs on E correspond to joinings of $G \rtimes (X, \mu)$ and $G \rtimes \text{pOrd}(G)$.
IRO extension property for groups implies that for equiv.: Let ν be a measure on $\text{pOrd}(G)$.
For each x, we identify G with $[x]_E$.

Lemma

Let E be an orbit equivalence relation of an essentially free action $G ∾ (X, µ)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.
IROs on E correspond to joinings of $G ∾ (X, µ)$ and $G ∾ \text{pOrd}(G)$.
IRO extension property for groups implies that for equiv.: Let $ν$ be a measure on $\text{pOrd}(G)$.
For each x, we identify G with $[x]_E$ (and so $M(\text{pOrd}(G))$ with $M(\text{pOrd}([x]_E)))$. So we get an IRO f. Apply the extension property for E to f.

Lemma

Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.
IROs on E correspond to joinings of $G \curvearrowright (X, \mu)$ and $G \curvearrowright \text{pOrd}(G)$.
IRO extension property for groups implies that for equiv.:
Let ν be a measure on $\text{pOrd}(G)$.
For each x, we identify G with $[x]_E$ (and so $M(\text{pOrd}(G))$ with $M(\text{pOrd}([x]_E)))$. So we get an IRO f.
Apply the extension property for E to f.
get an invariant measure on $X \times \text{pOrd}(G) \times \text{tOrd}(G)$.
\qed
Proof.
IRO extension property for G implies that for E.

proof continued
proof continued

Proof.
IRO extension property for G implies that for E.

Idea:
- IRO on E gives a joining of $G \bowtie (X, \mu)$ with $G \bowtie \text{pOrd}(G)$.
Proof.
IRO extension property for G implies that for E.

Idea:

- IRO on E gives a joining of $G \bowtie (X, \mu)$ with $G \bowtie \text{pOrd}(G)$.
- project to $\text{pOrd}(G)$.
proof continued

Proof.
IRO extension property for G implies that for E.

Idea:

▶ IRO on E gives a joining of $G \bowtie (X, \mu)$ with $G \bowtie \text{pOrd}(G)$.
▶ project to $\text{pOrd}(G)$.
▶ apply the extension property for G
Proof.
IRO extension property for G implies that for E.

Idea:

- IRO on E gives a joining of $G \bowtie (X, \mu)$ with $G \bowtie \text{pOrd}(G)$.
- Project to $\text{pOrd}(G)$.
- Apply the extension property for G.
- Relatively independent toining of $G \bowtie X \times \text{pOrd}(G)$ and $G \bowtie \text{pOrd}(G) \times \text{tOrd}(G)$ over the common factor $\text{pOrd}(G)$.
Proof.
IRO extension property for G implies that for E.

Idea:
- IRO on E gives a joining of $G \bowtie (X, \mu)$ with $G \bowtie \text{pOrd}(G)$.
- Project to $\text{pOrd}(G)$.
- Apply the extension property for G.
- Relatively independent toining of $G \bowtie X \times \text{pOrd}(G)$ and $G \bowtie \text{pOrd}(G) \times \text{tOrd}(G)$ over the common factor $\text{pOrd}(G)$.
- Decompose over X.

□
Counterexample for F_2

Why there is a counterexample for F_2?
Counterexample for F_2

Why there is a counterexample for F_2?

$\pi : F_2 \rightarrow SL_3(\mathbb{Z})$, lift over projection.
For $a, b \in G$ denote:

\[sml^+ \sqsubseteq (a, b) = \{ \prec \in \text{Ext}(\sqsubseteq) \mid \exists q > 0 \forall n > 0 a - q b \prec e \} \]

\[sml^- \sqsubseteq (a, b) = \{ \prec \in \text{Ext}(\sqsubseteq) \mid \exists q > 0 \forall n > 0 e \prec b - n a q \} \]

\[
\begin{align*}
a_1 &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
a_2 &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
a_3 &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
a_4 &= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
a_5 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \\
a_6 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}
\end{align*}
\]
For $a, b \in G$ denote:

$$sml^+_E(a, b) = \{ \preceq \in \text{Ext}(E) \mid \exists q > 0 \forall n > 0 \ a^{-q}b^n \prec e \}$$
$$sml^-_E(a, b) = \{ \preceq \in \text{Ext}(E) \mid \exists q > 0 \forall n > 0 \ e \prec b^{-n}a^q \}$$
For $a, b \in G$ denote:

\[
\begin{align*}
sml^{+}_{E}(a, b) &= \{ \prec \in \text{Ext}(E) | \exists q > 0 \forall n > 0 \ a^{-q} b^n \prec e \} \\
\text{sml}^{-}_{E}(a, b) &= \{ \prec \in \text{Ext}(E) | \exists q > 0 \forall n > 0 \ e \prec b^{-n} a^q \}
\end{align*}
\]

\[
\begin{align*}
a_1 &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & a_2 &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & a_3 &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
a_4 &= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & a_5 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} & a_6 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}
\end{align*}
\]
Denote \(s^m_\ell \subseteq T_{\ell=1}^{6} \) and \(s^m_\ell \subseteq (a\ell, a\ell-1) \) and \(s^m_\ell \subseteq T_{\ell=1}^{6} \) and \(s^m_\ell \subseteq (a\ell, a\ell+1) \).

Lemma (GLM22)

\[\text{Ext}(\subseteq) = s^m_\ell \cup s^m_\ell \]

Let \(F \) be a free group and let \(\pi: F \to \Gamma \) be an epimorphism. A **transversal** is any map \(\phi \) from \(\Gamma \) to \(F \) such that \(\pi \circ \phi \) is the identity map on \(\Gamma \).

Fix any \(\alpha_1, \ldots, \alpha_6 \in F \) such that \(\pi(\alpha_i) = a_i \). Define \(\phi(a_n^i a_m^i+1) = \alpha_n^i \alpha_m^i+1 \), for \(i = 1, \ldots, 6 \mod 6 \), and \(n, m \in \mathbb{Z} \); we define \(\phi \) on remaining elements of \(\Gamma \) arbitrarily to get a transversal.
Denote \(\text{sml}^- = \bigcap_{i=1}^6 \text{sml}^-(a_i, a_{i-1}) \) and \(\text{sml}^+ = \bigcap_{i=1}^6 \text{sml}^+(a_i, a_{i+1}) \).
Denote \(\text{sml}_- = \bigcap_{i=1}^{6} \text{sml}_- (a_i, a_{i-1}) \) and
\(\text{sml}_+ = \bigcap_{i=1}^{6} \text{sml}_+ (a_i, a_{i+1}) \).

Lemma (GLM22)

\[
\text{Ext}(\square) = \text{sml}_-^+ \cup \text{sml}_-^-
\]

Let \(F \) be a free group and let \(\pi : F \to \Gamma \) be an epimorphism. A transversal is any map \(\varphi \) from \(\Gamma \) to \(F \) such that \(\pi \circ \varphi \) is the identity map on \(\Gamma \).

Fix any \(\alpha_1, \ldots, \alpha_6 \in F \) such that \(\pi(\alpha_i) = a_i \). Define
\(\varphi(a_i^n a_{i+1}^m) = \alpha_i^n \alpha_{i+1}^m \), for \(i = 1, \ldots, 6 \mod 6 \), and \(n, m \in \mathbb{Z} \); we define \(\varphi \) on remaining elements of \(\Gamma \) arbitrarily to get a transversal.
Thanks!