Topology versus Borel structure for actions

Ronnie Chen

University of Michigan

McGill DDC seminar, October 18, 2022
Background

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$.
For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$.
Background

For a topological space \(X \), \(\mathcal{O}(X) := \{ \text{open sets in } X \} \).

For a Borel space \(X \), \(\mathcal{B}(X) := \{ \text{Borel sets in } X \} \).

Question \(\mathcal{O}(X) \sim \mathcal{B}(X) \); how reversible is this?
Background

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$.
For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$.

Question $\mathcal{O}(X) \sim \mathcal{B}(X)$; how reversible is this?

Theorem (classical)

For a “nice” Borel space X, every $B \in \mathcal{B}(X)$ is in some “nice” compatible topology. Moreover, countably many $B_i \in \mathcal{B}(X)$ may be made open at once.

“Nice” Borel space = standard Borel space
“Nice” topology = e.g., Polish
Background

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$.
For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$.

Question $\mathcal{O}(X) \rightsquigarrow \mathcal{B}(X)$; how reversible is this?

Theorem (classical)

For a “nice” Borel space X, every $B \in \mathcal{B}(X)$ is in some “nice” compatible topology. Moreover, countably many $B_i \in \mathcal{B}(X)$ may be made open at once.

“Nice” Borel space = standard Borel space
“Nice” topology = e.g., Polish

Theorem (Pettis)

For a Polish group G, $U \in \mathcal{B}(G)$ is a nbhd of 1 iff \exists ctbl $G = \bigcup_i B_i$, $B_i B_i^{-1} \subseteq U$.
Background

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$.

For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$.

Question $\mathcal{O}(X) \rightsquigarrow \mathcal{B}(X)$; how reversible is this?

Theorem (classical)

For a “nice” Borel space X, every $B \in \mathcal{B}(X)$ is in some “nice” compatible topology. Moreover, countably many $B_i \in \mathcal{B}(X)$ may be made open at once.

“Nice” Borel space = standard Borel space

“Nice” topology = e.g., Polish

Theorem (Pettis)

For a Polish group G, $U \in \mathcal{B}(G)$ is a nbhd of 1 iff \exists ctbl $G = \bigcup_i B_i$, $B_i B_i^{-1} \subseteq U$.

Proof sketch. \iff: By Baire category, some $B_i \ni^* V_i \in \mathcal{O}(G) \setminus \{\emptyset\}$
Background

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$.
For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$.

Question $\mathcal{O}(X) \rightsquigarrow \mathcal{B}(X)$; how reversible is this?

Theorem (classical)

For a “nice” Borel space X, every $B \in \mathcal{B}(X)$ is in some “nice” compatible topology. Moreover, countably many $B_i \in \mathcal{B}(X)$ may be made open at once.

“Nice” Borel space = standard Borel space
“Nice” topology = e.g., Polish

Theorem (Pettis)

For a Polish group G, $U \in \mathcal{B}(G)$ is a nbhd of 1 iff \exists ctbl $G = \bigcup_i B_i, B_iB_i^{-1} \subseteq U$.

Proof sketch. \iff: By Baire category, some $B_i \supseteq^\ast V_i \in \mathcal{O}(G) \setminus \{\emptyset\}$

$\implies U \supseteq B_iB_i^{-1} \supseteq V_iV_i^{-1} \ni 1$. □
Group actions

\[G \curvearrowright X: \]

\[G \cdot x \cong G/G_x \]

\[G \cdot y \]

\[G \cdot z \]

Theorem (Becker–Kechris 1996)

Let \(G \) be a Polish group, \(X \) be a standard Borel \(G \)-space. For \(B \in B(X) \), TFAE:

(i) \(B \) is potentially open in some compatible Polish top making \(G \rtimes X \) cts;

(ii) \(B \) is orbitwise open: for each \(x \in X \), \(B \) is open in quotient top on \(G \rightarrow G \cdot x \).

Moreover, ctbly many orbitwise open \(B_i \) may be made open at once.

Corollary

Every standard Borel \(G \)-space may be made into a Polish \(G \)-space.

Corollary

For a Polish \(G \)-sp \(X \), topology may be refined to make orbwise open (e.g., invariant) \(B \) open.
Theorem (Becker–Kechris 1996)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is potentially open in some compat Polish top making $G \curvearrowright X$ cts;
(ii) B is orbitwise open: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$.

Moreover, ctbly many orbitwise open B_i may be made open at once.
Group actions

\[G \curvearrowright X: \]

\[G \cdot x \cong G/G_x \]

\[G \cdot y \]

\[\ldots \]

\[G \cdot z \]

Theorem (Becker–Kechris 1996)

Let \(G \) be a Polish group, \(X \) be a standard Borel \(G \)-space. For \(B \in \mathcal{B}(X) \), TFAE:

(i) \(B \) is potentially open in some compat Polish top making \(G \curvearrowright X \) cts;

(ii) \(B \) is orbitwise open: for each \(x \in X \), \(B \) is open in quotient top on \(G \rightarrow G \cdot x \).

Moreover, ctbly many orbitwise open \(B_i \) may be made open at once.

Corollary Every standard Borel \(G \)-space may be made into a Polish \(G \)-space.
Group actions

\(G \bowtie X: \)

\[
\begin{align*}
G \cdot x &\cong G / G_x \\
G \cdot y &
\end{align*}
\]

Theorem (Becker–Kechris 1996)

Let \(G \) be a Polish group, \(X \) be a standard Borel \(G \)-space. For \(B \in \mathcal{B}(X) \), TFAE:

(i) \(B \) is potentially open in some compat Polish top making \(G \bowtie X \) cts;

(ii) \(B \) is orbitwise open: for each \(x \in X \), \(B \) is open in quotient top on \(G \rightarrow G \cdot x \).

Moreover, ctbly many orbitwise open \(B_i \) may be made open at once.

Corollary Every standard Borel \(G \)-space may be made into a Polish \(G \)-space.

Corollary For a Polish \(G \)-sp \(X \), topology may be refined to make orbwise open \(B \) open. (e.g., invariant)
Goals

Better understanding of Becker–Kechris, and topological realizations in general.
Goals

Better understanding of Becker–Kečriss, and topological realizations in general.

1. Detailed characterization of potentially open Borel sets.
 (i) potentially open
 (ii) orbitwise open
 (iii) preimage under action is ctbl union of Borel rectangles
 (iv) translates are ctbly generated under unions
 (v) ctbl union of Vaught transforms

 ▶ more “topological” than original proof (and proof of Hjorth)
 ▶ does not use strong Choquet game
 ▶ easily generalizes to other contexts

3. Extend to various other contexts.
 ▶ potentially open n-ary relations
 ▶ non-Hausdorff (quasi-Polish) G-spaces
 ▶ groupoid actions
 ▶ actions preserving existing topology
 ▶ non-second-countable actions (on point-free “spaces”)
Goals

Better understanding of Becker–Kechris, and topological realizations in general.

1. Detailed characterization of potentially open Borel sets.
 (i) potentially open
 (ii) orbitwise open
 (iii) preimage under action is ctbl union of Borel rectangles
 (iv) translates are ctbly generated under unions
 (v) ctbl union of Vaught transforms

 ▶ more “topological” than original proof (and proof of Hjorth)
 ▶ does not use strong Choquet game
 ▶ easily generalizes to other contexts

3. Extend to various other contexts.
 ▶ potentially open n-ary relations
 ▶ non-Hausdorff (quasi-Polish) G-spaces
 ▶ groupoid actions
 ▶ actions preserving existing topology
 ▶ non-second-countable actions (on point-free “spaces”)
Goals

Better understanding of Becker–Kechris, and topological realizations in general.

1. Detailed characterization of potentially open Borel sets.
 (i) potentially open
 (ii) orbitwise open
 (iii) preimage under action is ctbl union of Borel rectangles
 (iv) translates are ctbly generated under unions
 (v) ctbl union of Vaught transforms

 ▶ more “topological” than original proof (and proof of Hjorth)
 ▶ does not use strong Choquet game
 ▶ easily generalizes to other contexts

3. Extend to various other contexts.
 ▶ potentially open n-ary relations
 ▶ non-Hausdorff (quasi-Polish) G-spaces
 ▶ groupoid actions
 ▶ actions preserving existing topology
 ▶ non-second-countable actions (on point-free “spaces”)
Quasi-Polish spaces

Definition (de Brecht 2013) A **quasi-Polish space** is a “non-Hausdorff Polish space”.

- **Fact** Polish = quasi-Polish + T^3.
- **Fact** Change of topology works the same for quasi-Polish as for Polish spaces.
- **Fact** Quasi-Polish spaces are standard Borel and (completely) Baire.
- **Fact** Quasi-Polish group = Polish group.
Quasi-Polish spaces

Definition (de Brecht 2013) A quasi-Polish space is a “non-Hausdorff Polish space”.

- second-countable, completely quasi-metrizable
- Π^0_2 subspace of $\mathcal{S}^\mathbb{N}$, where $\mathcal{S} = \{0, 1\}$ w/ $\{1\}$ open, and Π^0_2 means $\bigcap_i (U_i \Rightarrow V_i)$
- continuous open T_0 quotient of $\mathbb{N}^\mathbb{N}$
 - recall: Polish = continuous open T_3 quotient of $\mathbb{N}^\mathbb{N}$
- T_0 quotient of a Polish group action on Polish space (topol ergodic decomp)
Quasi-Polish spaces

Definition (de Brecht 2013) A quasi-Polish space is a “non-Hausdorff Polish space”.

- second-countable, completely quasi-metrizable
- \mathcal{P}_2^0 subspace of $\mathbb{S}^\mathbb{N}$, where $\mathbb{S} = \{0, 1\}$ w/ $\{1\}$ open, and \mathcal{P}_2^0 means $\bigcap_i (U_i \Rightarrow V_i)$
- continuous open T_0 quotient of $\mathbb{N}^\mathbb{N}$
 - recall: Polish = continuous open T_3 quotient of $\mathbb{N}^\mathbb{N}$
- T_0 quotient of a Polish group action on Polish space (topol ergodic decomp)

Fact: Polish = quasi-Polish + T_3.

Change of topology works the same for quasi-Polish as for Polish spaces.

Quasi-Polish spaces are standard Borel and (completely) Baire.

Quasi-Polish group = Polish group.
Quasi-Polish spaces

Definition (de Brecht 2013) A **quasi-Polish space** is a “non-Hausdorff Polish space”.

- second-countable, completely quasi-metrizable
- Π^0_2 subspace of $\mathbb{S}^\mathbb{N}$, where $\mathbb{S} = \{0, 1\}$ w/ $\{1\}$ open, and Π^0_2 means $\cap_i (U_i \Rightarrow V_i)$
- continuous open T_0 quotient of $\mathbb{N}^\mathbb{N}$
 - recall: Polish = continuous open T_3 quotient of $\mathbb{N}^\mathbb{N}$
- T_0 quotient of a Polish group action on Polish space (**topol ergodic decomp**)

Fact **Polish** = quasi-Polish + T_3.

Fact Change of topology works the same for quasi-Polish as for Polish spaces.
Quasi-Polish spaces

Definition (de Brecht 2013) A **quasi-Polish space** is a “non-Hausdorff Polish space”.

- second-countable, completely quasi-metrizable
- Π^0_2 subspace of $\mathbb{S}^\mathbb{N}$, where $\mathbb{S} = \{0, 1\}$ w/ $\{1\}$ open, and Π^0_2 means $\cap_i (U_i \Rightarrow V_i)$
- continuous open T_0 quotient of $\mathbb{N}^\mathbb{N}$
 - recall: Polish = continuous open T_3 quotient of $\mathbb{N}^\mathbb{N}$
- T_0 quotient of a Polish group action on Polish space (**topol ergodic decomp**)

Fact Polish = quasi-Polish + T_3.

Fact Change of topology works the same for quasi-Polish as for Polish spaces.

Fact Quasi-Polish spaces are standard Borel and (completely) Baire.
Quasi-Polish spaces

Definition (de Brecht 2013) A **quasi-Polish space** is a “non-Hausdorff Polish space”.

- second-countable, completely quasi-metrizable
- Π^0_2 subspace of S^N, where $S = \{0, 1\}$ w/ $\{1\}$ open, and Π^0_2 means $\bigcap_i (U_i \Rightarrow V_i)$
- continuous open T_0 quotient of \mathbb{N}^N
 - recall: Polish = continuous open T_3 quotient of \mathbb{N}^N
- T_0 quotient of a Polish group action on Polish space (**topol ergodic decomp**)

Fact Polish = quasi-Polish + T_3.

Fact Change of topology works the same for quasi-Polish as for Polish spaces.

Fact Quasi-Polish spaces are standard Borel and (completely) Baire.

Fact Quasi-Polish group = Polish group.
Let G be a Polish group, $\mu : G \times G \to G$ group mult, $\alpha : G \times X \to X$ Borel action.
Let G be a Polish group, $\mu : G \times G \to G$ group mult, $\alpha : G \times X \to X$ Borel action.

Transfer top on G to each $\alpha^{-1}(x)$.

\[
\begin{aligned}
\{(g,y) | gy = x\} &= \alpha^{-1}(x) \\
G \times X &\xrightarrow{\alpha} X \\
&\xrightarrow{\alpha^{-1}} \bigcup V W \subseteq U \times (V \times (W \star B)) \\
\end{aligned}
\]
Vaught transforms

Let G be a Polish group, $\mu : G \times G \to G$ group mult, $\alpha : G \times X \to X$ Borel action.

Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in \mathcal{B}(G \times X)$,

$$\exists^*_\alpha(A) := \{x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x)\}.$$
Vaught transforms

Let G be a Polish group, $\mu : G \times G \to G$ group mult, $\alpha : G \times X \to X$ Borel action.

Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in \mathcal{B}(G \times X)$,

$$\exists_{\alpha}^*(A) := \{x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x)\}.$$

For $B \subseteq X$, $B = \exists_{\alpha}^*(\alpha^{-1}(B))$.

\[G \times X \quad \downarrow \quad \alpha^{-1}(B) \quad \downarrow \quad \alpha \quad \downarrow \quad G \times X\]

\[X \quad \downarrow \quad B \quad \downarrow \quad X\]
Let G be a Polish group, $\mu : G \times G \to G$ group mult, $\alpha : G \times X \to X$ Borel action.

Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in B(G \times X)$,

$$\exists^*_\alpha(A) := \{x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x)\}.$$

- For $B \subseteq X$, $B = \exists^*_\alpha(\alpha^{-1}(B))$.
- For pullback along $f : Y \to X$,

$$f^{-1}(\exists^*_\alpha(A)) = \exists^*_{\pi_1}(\pi_2^{-1}(A))$$
Let G be a Polish group, $\mu : G \times G \to G$ group mult, $\alpha : G \times X \to X$ Borel action.

Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in \mathcal{B}(G \times X)$,

$$\exists^*_\alpha(A) := \{x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x)\}.$$

- For $B \subseteq X$, $B = \exists^*_\alpha(\alpha^{-1}(B))$.
- For pullback along $f : Y \to X$,

$$f^{-1}(\exists^*_\alpha(A)) = \exists^*_{\pi_1}(\pi_2^{-1}(A)).$$

In particular,

$$\alpha^{-1}(\exists^*_\alpha(A)) = \exists^*_{G \times \alpha}((\mu \times G)^{-1}(A)).$$
Let G be a Polish group, $\mu : G \times G \to G$ group mult, $\alpha : G \times X \to X$ Borel action. Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in \mathcal{B}(G \times X)$,

$$\exists^*_\alpha(A) := \{ x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x) \}.$$

- For $B \subseteq X$, $B = \exists^*_\alpha(\alpha^{-1}(B))$.
- For pullback along $f : Y \to X$,

$$f^{-1}(\exists^*_\alpha(A)) = \exists^*_{\pi_1}(\pi_2^{-1}(A)).$$

In particular,

$$\alpha^{-1}(\exists^*_\alpha(A)) = \exists^*_{G \times \alpha}((\mu \times G)^{-1}(A)).$$

Definition For $U \in \mathcal{B}(G)$ and $B \in \mathcal{B}(X)$,

(aka: $B^{\Delta U^{-1}}$) $U \ast B := \exists^*_\alpha(U \times B)$.

Diagram
Vaught transforms

Let G be a Polish group, $\mu : G \times G \to G$ group mult, $\alpha : G \times X \to X$ Borel action.

Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in \mathcal{B}(G \times X)$,

$$\exists^*_\alpha(A) := \{ x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x) \}.$$

- For $B \subseteq X$, $B = \exists^*_\alpha(\alpha^{-1}(B))$.
- For pullback along $f : Y \to X$,

$$f^{-1}(\exists^*_\alpha(A)) = \exists^*_{\pi_1}(\pi_2^{-1}(A)).$$

In particular,

$$\alpha^{-1}(\exists^*_\alpha(A)) = \exists^*_{G \times \alpha}((\mu \times G)^{-1}(A)).$$

Definition For $U \in \mathcal{B}(G)$ and $B \in \mathcal{B}(X)$,

$$(\text{aka: } B^\Delta U^{-1}) \ U*B := \exists^*_\alpha(U \times B).$$

$$U \in \mathcal{O}(G) \implies \alpha^{-1}(U*B) = \bigcup_{VW \subseteq U} (V \times (W*B)).$$
Core Theorem (C. 2022)

Let G be a Polish group, X be a quasi-Polish space with a Borel G-action s.t.

$$\mathcal{O}(G) \ast \mathcal{O}(X) \subseteq \mathcal{O}(X).$$

Then $\langle \mathcal{O}(G) \ast \mathcal{O}(X) \rangle$ is a compat quasi-Polish top making action cts.
Core Theorem (C. 2022)

Let G be a Polish group, X be a quasi-Polish space with a Borel G-action s.t.

$$\mathcal{O}(G) \ast \mathcal{O}(X) \subseteq \mathcal{O}(X).$$

Then $\langle \mathcal{O}(G) \ast \mathcal{O}(X) \rangle$ is a compat quasi-Polish top making action cts.

Proof sketch. Action cts b/c $\alpha^{-1}(U \ast B) = \bigcup_{VW \subseteq U} (V \times (W \ast B))$.
Core Theorem (C. 2022)

Let G be a Polish group, X be a quasi-Polish space with a Borel G-action s.t.

$$\mathcal{O}(G) \ast \mathcal{O}(X) \subseteq \mathcal{O}(X).$$

Then $\langle \mathcal{O}(G) \ast \mathcal{O}(X) \rangle$ is a compat quasi-Polish top making action cts.

Proof sketch. Action cts b/c $\alpha^{-1}(U \ast B) = \bigcup_{VW \subseteq U} (V \times (W \ast B))$.

Topology is quasi-Polish essentially b/c of retraction

$$\mathcal{O}(G \times X) \xleftarrow{\exists^*_\alpha} \langle \mathcal{O}(G) \ast \mathcal{O}(X) \rangle \subseteq \mathcal{O}(X)$$
Topological realization

Core Theorem (C. 2022)

Let G be a Polish group, X be a quasi-Polish space with a Borel G-action s.t.
\[\mathcal{O}(G) \ast \mathcal{O}(X) \subseteq \mathcal{O}(X). \]

Then $\langle \mathcal{O}(G) \ast \mathcal{O}(X) \rangle$ is a compat quasi-Polish top making action cts.

Proof sketch. Action cts b/c $\alpha^{-1}(U \ast B) = \bigcup_{VW \subseteq U} (V \times (W \ast B))$.

Topology is quasi-Polish essentially b/c of retraction

\[\mathcal{O}(G \times X) \xrightarrow{\exists^*_\alpha} \langle \mathcal{O}(G) \ast \mathcal{O}(X) \rangle \subseteq \mathcal{O}(X) \]

Lemma Let $f : X \twoheadrightarrow Y$ be a Borel surj from a q-Pol sp to a st Borel sp. Suppose each fiber $f^{-1}(y)$ is equipped with a coarser q-Pol top “in a Borel way”, and f is cts wrt $\exists^*_f(\mathcal{O}(X))$. Then $Z :=$ smallest fbwise closed (in finer top) comgr (in coarser top) $\subseteq X$ is Π^0_2, and $f|_Z : Z \twoheadrightarrow Y$ is cts open T_0 quotient with $\exists^*_f = \exists^*_f|_Z$. \qed
Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is potentially open in some compat (quasi-)Polish top making $G \curvearrowright X$ cts;
(ii) B is orbitwise open: for each $x \in X$, B is open in quotient top on $G \rightarrow G \cdot x$;
(iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$;
(iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$;
(v) $B = \bigcup_i (U_i * B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$.

Moreover, ctbly many such B may be made open at once.
Theorem (Becker–Kecharis; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts;
(ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$;
(iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$;
(iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$;
(v) $B = \bigcup_i (U_i \ast B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$.

Moreover, ctbly many such B may be made open at once.

Proof. (i) \implies (ii),(iv)
Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is potentially open in some compat (quasi-)Polish top making $G \curvearrowright X$ cts;
(ii) B is orbitwise open: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$;
(iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$;
(iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$;
(v) $B = \bigcup_i (U_i \ast B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$.

Moreover, ctbly many such B may be made open at once.

Proof. (i) \implies (ii),(iv) \implies (iii) by

Theorem (Kunugui–Novikov) Let $f : X \to Y$ be a Borel map between st Borel spaces, $S \subseteq \mathcal{B}(X)$ be ctble. If $A \in \mathcal{B}(X)$ is f-fiberwise a union of sets in S, then

$$A = \bigcup_{S \in S} (f^{-1}(B_S) \cap S) \quad \text{for } B_S \in \mathcal{B}(Y).$$
Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts;
(ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \rightarrow G \cdot x$;
(iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in O(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$;
(iv) $\{gB \mid g \in G\} \subseteq \text{closure under } \bigcup \text{ of ctbly many } B_i \in \mathcal{B}(X)$;
(v) $B = \bigcup_i (U_i \ast B_i)$ for ctbly many $U_i \in O(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$.

Moreover, ctbly many such B may be made open at once.

Proof. (i) \implies (ii),(iv) \implies (iii) \implies (v) by $B = \exists^*_\alpha(\alpha^{-1}(B))$
Topological realization

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

1. B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts;
2. B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$;
3. $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$;
4. $\{gB \mid g \in G\} \subseteq \text{closure under } \bigcup \text{ of ctbly many } B_i \in \mathcal{B}(X)$;
5. $B = \bigcup_i (U_i \ast B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$.

Moreover, ctbly many such B may be made open at once.

Proof. (i) \Rightarrow (ii),(iv) \Rightarrow (iii) \Rightarrow (v) (both versions equiv by Pettis).
Topological realization

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is potentially open in some compat (quasi-)Polish top making $G \bowtie X$ cts;
(ii) B is orbitwise open: for each $x \in X$, B is open in quotient top on $G \rightarrow \rightarrow G \cdot x$;
(iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$;
(iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$;
(v) $B = \bigcup_i (U_i \ast B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$.

Moreover, ctbly many such B may be made open at once.

Proof. (i) \implies (ii),(iv) \implies (iii) \implies (v) (both versions equiv by Pettis).
(v) \implies (i): To make ctbly may $U_i \ast B_i$ open, find compat q-Pol top $\mathcal{O}(X)$ containing each B_i and closed under $\mathcal{O}(G)^*$.
Topological realization

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts;

(ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$;

(iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$;

(iv) $\{gB \mid g \in G\} \subseteq \text{closure under } \bigcup \text{ of ctbly many } B_i \in \mathcal{B}(X)$;

(v) $B = \bigcup_i (U_i \ast B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$.

Moreover, ctbly many such B may be made open at once.

Proof. (i) \implies (ii),(iv) \implies (iii) \implies (v) (both versions equiv by Pettis).

(v) \implies (i): To make ctbly may $U_i \ast B_i$ open, find compat q-Pol top $\mathcal{O}(X)$ containing each B_i and closed under $\mathcal{O}(G)^\ast$. By Core Thm, $\langle \mathcal{O}(G) \ast \mathcal{O}(X) \rangle$ works. \qed
Comparison with original proof

Core Theorem (Becker–Kechris 1996)

Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. \mathcal{A} is a Boolean algebra and $\mathcal{U} \ast \mathcal{A} \subseteq \mathcal{A}$.

Then $\langle \mathcal{U} \ast \mathcal{A} \rangle$ is a compat Polish top making action cts.

The proof consists of showing:

1. the action is cts;
2. the topology is T_3;
3. the topology is strong Choquet.

Combining 1. and 2. with our Core Thm yields a Polish top realization.
Comparison with Hjorth–Sami

<table>
<thead>
<tr>
<th>Core Theorem (Becker–Kechris 1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. \mathcal{A} is a Boolean algebra and $\mathcal{U} \mathcal{A} \subseteq \mathcal{A}$. Then $\langle \mathcal{U} \mathcal{A} \rangle$ is a compat Polish top making action cts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary (B–K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If X is already a Polish G-space, and $U \in \mathcal{O}(G)$, $B \in \Sigma^0_\xi(X)$, then $U \mathcal{B}$ may be made open in a finer Polish topology $\subseteq \Sigma^0_{\xi+\omega}$.</td>
</tr>
</tbody>
</table>
Comparison with Hjorth–Sami

Core Theorem (Becker–Kechris 1996)

Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. \mathcal{A} is a Boolean algebra and

$$\mathcal{U} \ast \mathcal{A} \subseteq \mathcal{A}.$$

Then $\langle \mathcal{U} \ast \mathcal{A} \rangle$ is a compat Polish top making action cts.

Corollary (B–K) If X is already a Polish G-space, and $U \in \mathcal{O}(G)$, $B \in \Sigma_0^{\xi}(X)$, then

$U \ast B$ may be made open in a finer Polish topology $\subseteq \Sigma_0^{\xi+\omega}$.

Theorem (Hjorth 1999) In fact, the new Polish topology may be contained in Σ_0^{ξ}.
Comparison with Hjorth–Sami

Core Theorem (Becker–Kechris 1996)
Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $U \subseteq \mathcal{O}(G)$ and $A \subseteq \mathcal{O}(X)$ be countable bases s.t. A is a Boolean algebra and
\[
U \ast A \subseteq A.
\]

Then $\langle U \ast A \rangle$ is a compat Polish top making action cts.

Corollary (B–K) If X is already a Polish G-space, and $U \in \mathcal{O}(G)$, $B \in \Sigma^0_{\xi}(X)$, then $U \ast B$ may be made open in a finer Polish topology $\subseteq \Sigma^0_{\xi + \omega}$.

Theorem (Hjorth 1999) In fact, the new Polish topology may be contained in Σ^0_{ξ}.

Theorem (Sami 1994) If G is non-Archimedean and $\xi \geq 2$, the new topology may be 0-d.
Comparison with Hjorth–Sami

<table>
<thead>
<tr>
<th>Core Theorem (Becker–Kechriss 1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. \mathcal{A} is a Boolean algebra and $\mathcal{U} \ast \mathcal{A} \subseteq \mathcal{A}$. Then $\langle \mathcal{U} \ast \mathcal{A} \rangle$ is a compat Polish top making action cts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary (B–K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If X is already a Polish G-space, and $U \in \mathcal{O}(G)$, $B \in \Sigma^0_\xi(X)$, then $U \ast B$ may be made open in a finer Polish topology $\subseteq \Sigma^0_{\xi+\omega}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Hjorth 1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In fact, the new Polish topology may be contained in Σ^0_ξ.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Sami 1994)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is non-Archimedean and $\xi \geq 2$, the new topology may be 0-d.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary (of our Core Thm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a quasi-Polish G-space X and $B \in \Sigma^0_\xi(X)$, $U \ast B$ is open in a finer quasi-Polish topology $\subseteq \Sigma^0_\xi(X)$.</td>
</tr>
</tbody>
</table>
Better Core Theorem (C.)

Let G be a Polish group, X be a quasi-Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. $\mathcal{U} = \mathcal{U}^{-1}$, \mathcal{A} is a **lattice**, and $\mathcal{U} \ast \mathcal{A} \subseteq \mathcal{A}$.

Then letting \mathcal{B} be the Boolean algebra generated by \mathcal{A}, $\langle \mathcal{U} \ast \mathcal{B} \rangle$ is a compat Polish top making the action cts, and is 0-d if \mathcal{U} consists of cosets.
Comparison with Hjorth–Sami

Better Core Theorem (C.)

Let G be a Polish group, X be a quasi-Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. $\mathcal{U} = \mathcal{U}^{-1}$, \mathcal{A} is a **lattice**, and

$$\mathcal{U} \ast \mathcal{A} \subseteq \mathcal{A}.$$

Then letting \mathcal{B} be the Boolean algebra generated by \mathcal{A}, $\langle \mathcal{U} \ast \mathcal{B} \rangle$ is a compat Polish top making the action cts, and is 0-d if \mathcal{U} consists of cosets.

Corollary For a quasi-Polish G-space X and $B \in \Sigma^0_\xi(X)$, $\xi \geq 2$, $\mathcal{U} \ast B$ is open in a finer **Polish** topology $\subseteq \Sigma^0_\xi(X)$ (0-d if G is non-Archimedean).
Automatic continuity for actions

Theorem (classical for Polish; C.)

Let G be a Polish group, X be a quasi-Polish G-space with a Borel action of G via homeomorphisms. Then the action is jointly continuous.

In other words, “if the action preserves an existing topology, we may find a topological realization compatible with that existing topology”.
Automatic continuity for actions

Theorem (classical for Polish; C.)

Let G be a Polish group, X be a quasi-Polish G-space with a Borel action of G via homeomorphisms. Then the action is jointly continuous.

In other words, “if the action preserves an existing topology, we may find a topological realization compatible with that existing topology”.

Proof. For $B \in \mathcal{O}(X)$, by K–N, $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ where $U_i \in \mathcal{B}(G)$, $B_i \in \mathcal{O}(X)$.
Automatic continuity for actions

Theorem (classical for Polish; C.)

Let G be a Polish group, X be a quasi-Polish G-space with a Borel action of G via homeomorphisms. Then the action is jointly continuous.

In other words, “if the action preserves an existing topology, we may find a topological realization compatible with that existing topology”.

Proof. For $B \in \mathcal{O}(X)$, by K–N, $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ where $U_i \in \mathcal{B}(G), B_i \in \mathcal{O}(X)$. So for any $U \in \mathcal{O}(G)$,

$$U \ast B = \exists^*_{\alpha}((U \times X) \cap \pi_2^{-1}(B))$$
$$= \exists^*_{\pi_2}((U \times X) \cap \alpha^{-1}(B))$$
$$= \bigcup_{U \cap U_i \neq \emptyset} B_i \in \mathcal{O}(X).$$

So $\mathcal{O}(G) \ast \mathcal{O}(X) \subseteq \mathcal{O}(X)$.
Automatic continuity for actions

Theorem (classical for Polish; C.)

Let G be a Polish group, X be a quasi-Polish G-space with a Borel action of G via homeomorphisms. Then the action is jointly continuous.

In other words, “if the action preserves an existing topology, we may find a topological realization compatible with that existing topology”.

Proof. For $B \in \mathcal{O}(X)$, by K–N, $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ where $U_i \in \mathcal{B}(G)$, $B_i \in \mathcal{O}(X)$. So for any $U \in \mathcal{O}(G)$,

$$U \ast B = \exists^*(\alpha_\pi^{-1}(U \times X) \cap \pi_2^{-1}(B))$$

$$= \exists^*(\pi_2^{-1}(U \times X) \cap \alpha^{-1}(B))$$

$$= \bigcup_{U \cap U_i \neq \emptyset} B_i \in \mathcal{O}(X).$$

So $\mathcal{O}(G) \ast \mathcal{O}(X) \subseteq \mathcal{O}(X)$. By Pettis, $B = \bigcup_i (U_i \ast B_i) \in \langle \mathcal{O}(G) \ast \mathcal{O}(X) \rangle = \mathcal{O}(X)$. □
Definition A **groupoid** \(G \) consists of two maps \(G \xrightarrow{\sigma} G_0 \) (src, tgt) and operations

![Diagram of groupoid](image-url)
Groupoids

Definition A groupoid G consists of two maps $G \xrightarrow{\sigma} G_0$ (src, tgt) and operations

An action of G on a bundle $p : X \to G_0$ is a map $\alpha : G \times_{G_0} X \to X$ s.t. each $g : x \to y \in G$ acts via a map $p^{-1}(x) \to p^{-1}(y)$.
Groupoids

Definition A **groupoid** G consists of two maps $G \xrightarrow{\sigma} G_0$ (src, tgt) and operations

\[g \circ h \]

\[g^{-1} \]

An **action** of G on a bundle $p : X \to G_0$ is a map $\alpha : G \times_{G_0} X \to X$ s.t. each $g : x \to y \in G$ acts via a map $p^{-1}(x) \to p^{-1}(y)$.

A topological groupoid G is **open** if σ (equivalently, τ, μ) are.
Definition A **groupoid** G consists of two maps $G \xrightarrow{\sigma} G_0$ (src, tgt) and operations

An **action** of G on a bundle $p : X \to G_0$ is a map $\alpha : G \times_{G_0} X \to X$ s.t. each $g : x \to y \in G$ acts via a map $p^{-1}(x) \to p^{-1}(y)$.

A topological groupoid G is **open** if σ (equivalently, τ, μ) are.

Note Most open quasi-Polish groupoids are not Polish!
Theorem (Lupini for Polish; C.)

Let G be an open q-Pol gpd, $p : X \to G_0$ a st Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is **potentially open** in some compat quasi-Polish top making p, α cts;

(ii) B is **orbitwise open**: $\forall a \in p^{-1}(x), B$ is open in quot top on $\sigma^{-1}(x) \to G \cdot a$;

(iii), (iv), (v) similarly to before.

Moreover, ctbly many such B may be made open at once.
Theorem (Lupini for Polish; C.)

Let G be an open q-Pol gpd, $p : X \to G_0$ a st Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is potentially open in some compat quasi-Polish top making p, α cts;

(ii) B is orbitwise open: $\forall a \in p^{-1}(x)$, B is open in quot top on $\sigma^{-1}(x) \to G \cdot a$;

(iii), (iv), (v) similarly to before.

Moreover, ctbly many such B may be made open at once.

Corollary If X is a quasi-Polish G-space, and $B \in \Sigma^0_\xi(X)$, then $U \ast B$ may be made open in a finer quasi-Polish topology $\subseteq \Sigma^0_\xi$.
Topological realization for groupoid actions

Theorem (Lupini for Polish; C.)

Let G be an open q-Pol gpd, $p : X \rightarrow G_0$ a st Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is potentially open in some compat quasi-Polish top making p, α cts;

(ii) B is orbitwise open: $\forall a \in p^{-1}(x)$, B is open in quot top on $\sigma^{-1}(x) \rightarrow G \cdot a$;

(iii), (iv), (v) similarly to before.

Moreover, ctbly many such B may be made open at once.

Corollary If X is a quasi-Polish G-space, and $B \in \Sigma^0_\xi(X)$, then $U \ast B$ may be made open in a finer quasi-Polish topology $\subseteq \Sigma^0_\xi$.

Theorem (C.)

Let G be an open q-Pol gpd, $p : X \rightarrow G_0$ a standard Borel bundle of q-Pol spaces with a G-action via homeos. Then \exists global q-Pol top on X restricting to fiberwise tops.
Open relations

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?
Open relations

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?

Remark For a st Borel space X, $R \in X^n$ is potentially open iff $R = \bigcup_i (B_{i,1} \times \cdots \times B_{i,n})$.
Open relations

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?

Remark For a st Borel space X, $R \in X^n$ is potentially open iff $R = \bigcup_i (B_{i,1} \times \cdots \times B_{i,n})$.

Theorem (C.)

Let G be a Polish group, X be a st Borel G-space. For $R \in \mathcal{B}(X^n)$, TFAE:

(i) R is potentially open in product top for some q-Pol top on X making action cts;
(ii) R is a ctbl union of Vaught transforms of Borel rectangles;

... (7 more conditions)
Open relations

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?

Remark For a st Borel space X, $R \in X^n$ is potentially open iff $R = \bigcup_i (B_{i,1} \times \cdots \times B_{i,n})$.

Theorem (C.)

Let G be a Polish group, X be a st Borel G-space. For $R \in \mathcal{B}(X^n)$, TFAE:

(i) R is **potentially open** in product top for some q-Pol top on X making action cts;
(ii) R is a ctbl union of Vaught transforms of Borel rectangles;

... (7 more conditions)

In particular, this holds if R is G-invariant and a ctbl union of Borel rectangles:

Corollary If $(X, R_i)_i$ is a st Borel relational G-structure, s.t. each R_i is a ctbl union of Borel rectangles, then \exists a top realization w/ each R_i open.
Open relations

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?

Remark For a st Borel space X, $R \in X^n$ is potentially open iff $R = \bigcup_i (B_{i,1} \times \cdots \times B_{i,n})$.

Theorem (C.)

Let G be a Polish group, X be a st Borel G-space. For $R \in \mathcal{B}(X^n)$, TFAE:

(i) R is potentially open in product top for some q-Pol top on X making action cts;
(ii) R is a ctbl union of Vaught transforms of Borel rectangles;

... (7 more conditions)

In particular, this holds if R is G-invariant and a ctbl union of Borel rectangles:

Corollary If $(X, R_i)_i$ is a st Borel relational G-structure, s.t. each R_i is a ctbl union of Borel rectangles, then \exists a top realization w/ each R_i open.

Similarly for groupoids, multi-sorted structures, change of topology, ...