Determinacy, measure, toasts, and the shift graph

Zoltán Vidnyánszky

California Institute of Technology

McGill DDC Seminar
Assume that G is a graph and $\mathcal{V}(G)$ is endowed with a Borel structure. $n \in \{1, 2, \ldots, \aleph_0\}$ is equipped with the trivial Borel structure.
On Borel combinatorics

Assume that G is a graph and $V(G)$ is endowed with a Borel structure. $n \in \{1, 2, \ldots, \aleph_0\}$ is equipped with the trivial Borel structure.

Can talk about:

Borel graphs: G is a Borel graph is G is Borel a subset of $V(G) \times V(G)$.

Borel chromatic numbers: minimal n for which G has a Borel n-coloring. Notation: $\chi_B(G)$.

Borel homomorphisms: if G, H are Borel graphs, a Borel homomorphism is a Borel map $f : V(G) \to V(H)$ that takes edges to edges. Notation: $G \leq_B H$.
The shift graph

Let us denote by $[S]^\infty$ the collection of countably infinite subsets of the set S.
The shift graph

Let us denote by \([S]^\mathbb{N}\) the collection of countably infinite subsets of the set \(S\).

Theorem. (Galvin-Prikry) Let \([\mathbb{N}]^\mathbb{N} = B_0 \cup \cdots \cup B_n\) be a Borel covering. Then there exists some \(i \leq n\) and \(A \subset \mathbb{N}\) infinite with \([A]^\mathbb{N} \subset B_i\).
The shift graph

Let us denote by $[S]^\mathbb{N}$ the collection of countably infinite subsets of the set S.

Theorem. (Galvin-Prikry) Let $[\mathbb{N}]^\mathbb{N} = B_0 \cup \cdots \cup B_n$ be a Borel covering. Then there exists some $i \leq n$ and $A \subset \mathbb{N}$ infinite with $[A]^\mathbb{N} \subset B_i$.

Let $S : [\mathbb{N}]^\mathbb{N} \rightarrow [\mathbb{N}]^\mathbb{N}$ be the *shift-map*, defined by

$$S(x) = x \setminus \{\min x\}.$$

Define the shift-graph G_S by letting $x G_S y$ iff $y = S(x)$.
The shift graph

Theorem. (Kechris-Solecki-Todorčević) \(\chi_B(G_S) = \aleph_0 \).

If: IF \(c : \Sigma_0 \rightarrow \eta \) is BOREL
THEN \((c^{-1}(i;i^2))_{i \leq n} \) is a BOREL covering

\(\theta \in \Sigma_0 \) AND \(Y \) G-P \(\exists A \in \Sigma_0 \)

\(\left[A \right]^n \leq c^{-1}(i;i^2) \) \(\land \) \(C(A) = C(S(A)) = i \).

KST: \(\chi_B(G) > \aleph_0 \) \(\iff \) \(G \leq B \) \(G \)
The shift graph

Theorem. (Kechris-Solecki-Todorčević) \(\chi_B(G_S) = \aleph_0 \).

Question. Assume that \(G \) is an acyclic Borel graph with \(\chi_B(G) \geq \aleph_0 \). Is \(G_S \leq_B G \)?
The shift graph

Theorem. (Kechris-Solecki-Todorčević) $\chi_B(G_S) = \aleph_0$.

Question. Assume that G is an acyclic Borel graph with $\chi_B(G) \geq \aleph_0$. Is $G_S \leq_B G$?

Theorem. (Pequignot) No.
The shift graph

Theorem. (Kechris-Solecki-Todorčević) $\chi_B(G_S) = \aleph_0$.

Question. Assume that G is an acyclic Borel graph with $\chi_B(G) \geq \aleph_0$. Is $G_S \leq_B G$?

Theorem. (Pequignot) No.

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number $< n$, for each $n \in \{4, \ldots, \aleph_0\}$.
The shift graph

Theorem. (Kechris-Solecki-Todorčević) $\chi_B(G_S) = \aleph_0$.

Question. Assume that G is an acyclic Borel graph with $\chi_B(G) \geq \aleph_0$. Is $G_S \leq_B G$?

Theorem. (Pequignot) No.

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number $< n$, for each $n \in \{4, \ldots, \aleph_0\}$.

In fact, the set of such graphs is Σ^1_2-complete.
Gadgets and measures

Theorem. (Grebík-V.) There is some d for which acyclic d-regular Borel graphs with Borel chromatic number ≤ 3 form a Σ^1_2-complete set.
Gadgets and measures

2) **Cyclic** \(\Rightarrow\) **Acyclic**

\((x, y) \in \mathcal{H} \times G^* \) \((x', y') \in \mathcal{H} \times G^* \)

\(\Leftarrow \Rightarrow x \in \mathcal{H} \times G^* \) \(y \in \mathcal{B} \)

\(\mathcal{H} \times G^* \leq \mathcal{H} \leq \mathcal{B} \leq G^* \)

\((\mathcal{H} \times G^*) \leq \mathcal{B} \leq \mathcal{B} \leq G^* \)

If \(\mathcal{H} \) is acyclic

\(\mathcal{H} \times \mathcal{B} \) contains only even cycles

\(\chi_B (G_B^*) \leq 3 \) \(\Leftarrow \Rightarrow \chi_B (G_B^* \times \mathcal{H}) \leq 3 \)

\(\Leftarrow \Rightarrow \chi_B (G_B^* \times \mathcal{H}) \leq 3 \)
Theorem. There exists a d, an acyclic d-regular Borel graph \mathcal{H} on a probability measure space (X, μ) such that for every $B \subseteq X$ Borel with $\mu(B) \geq \frac{1}{3}$ we have $\mu(N_{\mathcal{H}}(B)) > \frac{2}{3}$.
Gadgets and measures

Theorem. There exists a \(d \), an acyclic \(d \)-regular Borel graph \(\mathcal{H} \) on a probability measure space \((X, \mu)\) such that for every \(B \subseteq X \) Borel with \(\mu(B) \geq \frac{1}{3} \) we have \(\mu(N_\mathcal{H}(B)) > \frac{2}{3} \). In particular, if \(B, B' \subseteq X \) are measurable and with \(\mu(B), \mu(B') \geq \frac{1}{3} \) then there exist \(z \in B \) and \(z' \in B' \) that are adjacent in \(\mathcal{H} \).

(\text{MARKS}) \exists \ & \ & 3 \text{ REGULAR ACYCLIC BOREL GRAPH WITH } \chi_B(G) = 4
Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, \ldots, \aleph_0\}$: such graphs form a Σ^1_2-complete set.
Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, \ldots, \aleph_0\}$: such graphs form a Σ^1_2-complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subset [\mathbb{N}]^\mathbb{N}$ is a Borel set, and for some \mathcal{G}_S-independent Borel set B', for each $x \in B$ there is n with $S^n(x) \in B'$. Call such B' and *independent hitting set.*
Complexity on the shift

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, \ldots, \aleph_0\}$: such graphs form a Σ^1_2-complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subset [\mathbb{N}]^\mathbb{N}$ is a Borel set, and for some G_S-independent Borel set B', for each $x \in B$ there is n with $S^n(x) \in B'$. Call such B' and *independent hitting set*. Then $\chi_B(G_S \upharpoonright B) \leq 3$.

Complexity on the shift

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, \ldots, \aleph_0\}$: such graphs form a Σ^1_2-complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subset [\mathbb{N}]^\mathbb{N}$ is a Borel set, and for some G_S-independent Borel set B', for each $x \in B$ there is n with $S^n(x) \in B'$. Call such B' and independent hitting set. Then $\chi_B(G_S \upharpoonright B) \leq 3$.

A set $S \subset [\mathbb{N}]^\mathbb{N}$ is called *non-dominating* if there is an $f \in [\mathbb{N}]^\mathbb{N}$ such that for each $g \in S$ we have $|\{n : g(n) \leq f(n)\}| = \aleph_0$.

\[f \begin{array}{c} \nearrow \hfill \searrow \hfill \swarrow \hfill \nwarrow \end{array} \begin{array}{c} g \in S \end{array} \]
Complexity on the shift

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, \ldots, \aleph_0\}$: such graphs form a Σ^1_2-complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subseteq [\mathbb{N}]^\mathbb{N}$ is a Borel set, and for some G_S-independent Borel set B', for each $x \in B$ there is n with $S^n(x) \in B'$. Call such B' and independent hitting set. Then $\chi_B(G_S \upharpoonright B) \leq 3$.

A set $S \subseteq [\mathbb{N}]^\mathbb{N}$ is called *non-dominating* if there is an $f \in [\mathbb{N}]^\mathbb{N}$ such that for each $g \in S$ we have $|\{n : g(n) \leq f(n)\}| = \aleph_0$.

Non-dominating Borel sets admit an independent hitting set.
Complexity on the shift

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, \ldots, \aleph_0\}$: such graphs form a Σ^1_2-complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subset [\mathbb{N}]^\mathbb{N}$ is a Borel set, and for some G_S-independent Borel set B', for each $x \in B$ there is n with $S^n(x) \in B'$. Call such B' and independent hitting set. Then $\chi_B(G_S \upharpoonright B) \leq 3$.

A set $S \subset [\mathbb{N}]^\mathbb{N}$ is called non-dominating if there is an $f \in [\mathbb{N}]^\mathbb{N}$ such that for each $g \in S$ we have $|\{n : g(n) \leq f(n)\}| = \aleph_0$.

Non-dominating Borel sets admit an independent hitting set.

Theorem. If a Borel coloring problem is solvable on non-dominating Borel sets, and not solvable on $[\mathbb{N}]^\mathbb{N}$, then the Borel subgraphs of G_S on which it is solvable form a Σ^1_2-complete.
Shift and determinacy

Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have

$$\chi_{w\Delta_2}(\mathcal{H}) > 3 \Rightarrow \chi_B(\text{Hom}(T_3, \mathcal{H})) > 3.$$
Shift and determinacy

Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have

$$\chi_{w\Delta_2}(\mathcal{H}) > 3 \Rightarrow \chi_B(\text{Hom}(T_3, \mathcal{H})) > 3.$$

$$\chi_B(\mathcal{H}) \leq 3 \Rightarrow \chi_B(\text{Hom}(T_3, \mathcal{H})) \leq 3.$$
Shift and determinacy

Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have

$$\chi_{w\Delta^1_2}(\mathcal{H}) > 3 \Rightarrow \chi_B(\text{Hom}(T_3, \mathcal{H})) > 3.$$

$$\chi_B(\mathcal{H}) \leq 3 \Rightarrow \chi_B(\text{Hom}(T_3, \mathcal{H})) \leq 3.$$

Thus, if $B \subset [\mathbb{N}]^\mathbb{N}$ is non-dominating then

$$\chi_B(\text{Hom}(T_3, G_S \upharpoonright B)) \leq 3.$$
Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have

\[\chi_{w\Delta^1_2}(\mathcal{H}) > 3 \implies \chi_B(\text{Hom}(T_3, \mathcal{H})) > 3. \]

\[\chi_B(\mathcal{H}) \leq 3 \implies \chi_B(\text{Hom}(T_3, \mathcal{H})) \leq 3. \]

Thus,

- If $B \subset [\mathbb{N}]^\mathbb{N}$ is non-dominating then
 \[\chi_B(\text{Hom}(T_3, \mathcal{G}_S \upharpoonright B)) \leq 3, \]
- \[\chi_B(\text{Hom}(T_3, \mathcal{G}_S)) = 4. \]
Shift and determinacy

Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have

$$\chi_{w\Delta^1_2}(\mathcal{H}) > 3 \Rightarrow \chi_B(\text{Hom}(T_3, \mathcal{H})) > 3.$$

$$\chi_B(\mathcal{H}) \leq 3 \Rightarrow \chi_B(\text{Hom}(T_3, \mathcal{H})) \leq 3.$$

Thus,

- If $B \subset [\mathbb{N}]^\mathbb{N}$ is non-dominating then $\chi_B(\text{Hom}(T_3, G_S \upharpoonright B)) \leq 3$,
- $\chi_B(\text{Hom}(T_3, G_S)) = 4$.

Theorem. 3-regular acyclic Borel graphs with Borel chromatic number ≤ 3 form a Σ^1_2-complete set.
Marks’ method
Toasts

Let \mathcal{G} be a locally countable Borel graph and k. A k-toast is a sequence of Borel set $B_0 \subset B_1 \subset \cdots$ with

- $\bigcup_i B_i = V(G)$,
- $\mathcal{G} \upharpoonright B_i$ has finite connected components,
- if $S_i \neq S_j$ are connected components of some $\mathcal{G} \upharpoonright B_i$ and $\mathcal{G} \upharpoonright B_j$ then the distance of their boundaries is at least k.

\[\begin{array}{c}
B_0 \subset B_1 \subset \cdots
\end{array} \]
Theorem. Let l be odd. Then a k-toastable acyclic Borel graph admits a Borel homomorphism into C_l for every large enough k.
Toasts and non-dominating sets

Theorem. Let $B \subset [\mathbb{N}]^\mathbb{N}$ be non-dominating. Then $G_S \upharpoonright B$ is k-toastable for each k.
Toasts and non-dominating sets

Theorem. Let $B \subset [\mathbb{N}]^\mathbb{N}$ be non-dominating. Then $\mathcal{G}_S \upharpoonright B$ is k-toastable for each k.

Theorem. Toastable subgraphs of \mathcal{G}_S form a Σ^1_2-complete set.
Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ^1_2-complete, unless H is bipartite.
Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ_2^1-complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ_2^1-complete set, unless H is bipartite, in which case this set is Π^1_1.
Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ^1_2-complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ^1_2-complete set, unless H is bipartite, in which case this set is Π^1_1.

Theorem. Assume that H contains an odd cycle. Then Borel subgraphs of \mathcal{G}_S that admit a Borel homomorphism to H form a Σ^1_2-complete set.
Theorem. (Hell-Nesetříl) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ^1_2-complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ^1_2-complete set, unless H is bipartite, in which case this set is Π^1_1.

Theorem. Assume that H contains an odd cycle. Then Borel subgraphs of $G_\mathcal{S}$ that admit a Borel homomorphism to H form a Σ^1_2-complete set.

Theorem. (C-M-S-V) There is a Borel graph L with $\chi_B(G) > 2 \iff L \leq_B G$.
Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ^1_2-complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ^1_2-complete set, unless H is bipartite, in which case this set is Π^1_1.

Theorem. Assume that H contains an odd cycle. Then Borel subgraphs of G_S that admit a Borel homomorphism to H form a Σ^1_2-complete set.

Theorem. (C-M-S-V) There is a Borel graph L with $\chi_B(G) > 2 \iff L \leq_B G$. The Borel graphs that admit a Borel homomorphism to a bipartite graph form a Π^1_1 set.
Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ^1_2-complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ^1_2-complete set, unless H is bipartite, in which case this set is Π^1_1.

Theorem. Assume that H contains an odd cycle. Then Borel subgraphs of \mathcal{G}_S that admit a Borel homomorphism to H form a Σ^1_2-complete set.

Theorem. (C-M-S-V) There is a Borel graph L with $\chi_B(G) > 2 \iff L \leq_B \mathcal{G}$. The Borel graphs that admit a Borel homomorphism to a bipartite graph form a Π^1_1 set.

Combining the above theorems, we obtain a new, algebra-free strengthening of Thornton’s result.
Open questions

- Is the collection of compact free subshifts of $2^{\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2}$ with Borel chromatic number ≤ 3 also Σ^1_2-complete?
Open questions

- Is the collection of compact free subshifts of $2^\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ with Borel chromatic number ≤ 3 also Σ^1_2-complete?
- Is toastability Σ^1_2-complete on bounded degree acyclic Borel graphs?
Open questions

- Is the collection of compact free subshifts of $2^\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ with Borel chromatic number ≤ 3 also Σ^1_2-complete?
- Is toastability Σ^1_2-complete on bounded degree acyclic Borel graphs?
- What are the Borel CSP’s that are solvable from toasts?
Thank you for your attention!