The group of absolutely continuous homeomorphisms of $[0,1]$ is topologically 2-generated

Dakota Thor Ihli

McGill Descriptive Dynamics and Combinatorics Seminar
Aug 6 2021
Topological generating sets

Definition
Let G be a Polish group, and let $1 \leq n \leq \aleph_0$.

$\Omega_n := \{ (g_i)_{i < n} \in G^n : \langle g_i : i < n \rangle$ is dense in $G \}$.

We say G is topologically n-generated (resp. generically n-generated) if Ω_n is non-empty (resp. comeagre).

Definition
The topological rank (resp. generic rank) of G, denoted by $\text{trk}(G)$ (resp. $\text{grk}(G)$), is the least n for which G is topologically n-generated (resp. generically n-generated).
Topological generating sets

Definition

Let G be a Polish group, and let $1 \leq n \leq \aleph_0$.

We say G is topologically n-generated (resp. generically n-generated) if Ω_n is non-empty (resp. comeagre).

Definition

The topological rank (resp. generic rank) of G, denoted by $\text{trk}(G)$ (resp. $\text{grk}(G)$), is the least n for which G is topologically n-generated (resp. generically n-generated).
Let G be a Polish group, and let $1 \leq n \leq \aleph_0$.

$$
\Omega_n := \left\{ (g_i)_{i < n} \in G^n : \langle g_i : i < n \rangle \text{ is dense in } G \right\}.
$$
Let G be a Polish group, and let $1 \leq n \leq \aleph_0$.

$$\Omega_n := \left\{ (g_i)_{i < n} \in G^n : \langle g_i : i < n \rangle \text{ is dense in } G \right\}.$$

We say G is **topologically n-generated** (resp. **generically n-generated**) if Ω_n is non-empty (resp. comeagre).
Topological generating sets

Definition
Let G be a Polish group, and let $1 \leq n \leq \aleph_0$.

$$\Omega_n := \{(g_i)_{i<n} \in G^n : \langle g_i : i < n \rangle \text{ is dense in } G\}.$$

We say G is **topologically n-generated** (resp. **generically n-generated**) if Ω_n is non-empty (resp. comeagre).

Definition
The **topological rank** (resp. **generic rank**) of G, denoted by $\text{trk}(G)$ (resp. $\text{grk}(G)$), is the least n for which G is topologically n-generated (resp. generically n-generated).
• Every Polish group is generically \aleph_0-generated. (By separability.)
• Ω_n is a G_δ set in G^n. Thus, G is generically n-generated iff Ω_n is dense in G^n.
• If $\phi : G_1 \to G_2$ is a continuous group homomorphism with dense image, then $\text{trk}(G_2) \leq \text{trk}(G_1)$.
Every Polish group is generically \aleph_0-generated. (By separability.)
• Every Polish group is generically \aleph_0-generated. (By separability.)

• Ω_n is a G_δ set in G^n. Thus, G is generically n-generated iff Ω_n is dense in G^n.
• Every Polish group is generically \aleph_0-generated. (By separability.)

• Ω_n is a G_δ set in G^n. Thus, G is generically n-generated iff Ω_n is dense in G^n.

• If $\phi : G_1 \to G_2$ is a continuous group homomorphism with dense image, then $\text{trk}(G_2) \leq \text{trk}(G_1)$.
Example

Topologically 1-generated groups are also called monothetic. \((\mathbb{R}/\mathbb{Z})^n\) has this property for all \(n\), as does the group \(L_0(T)\).

These groups are also generically monothetic, i.e. generically 1-generated.

Example

\(\mathbb{R}^n\) is generically \((n+1)\)-generated.

Example (Kechris–Rosendal, 2007)

\(S_\infty\) is topologically 2-generated, as are many other automorphism groups of countable structures.

However, a non-archimedean group can never be generically \(n\)-generated for any finite \(n\).
Topological generating sets - examples

Example

Topologically 1-generated groups are also called **monothetic**. \((\mathbb{R}/\mathbb{Z})^n\) has this property for all \(n\), as does the group \(L_0(\mathbb{T})\).
Example

Topologically 1-generated groups are also called **monothetic**. $(\mathbb{R}/\mathbb{Z})^n$ has this property for all n, as does the group $L_0(\mathbb{T})$. These groups are also **generically monothetic**, i.e. generically 1-generated.
Example

Topologically 1-generated groups are also called monothetic. \((\mathbb{R}/\mathbb{Z})^n\) has this property for all \(n\), as does the group \(L_0(\mathbb{T})\). These groups are also generically monothetic, i.e. generically 1-generated.

Example

\(\mathbb{R}^n\) is generically \((n + 1)\)-generated.
Example

Topologically 1-generated groups are also called **monothetic**.
\((\mathbb{R}/\mathbb{Z})^n\) has this property for all \(n\), as does the group \(L_0(\mathbb{T})\). These groups are also **generically monothetic**, i.e. generically 1-generated.

Example

\(\mathbb{R}^n\) is generically \((n + 1)\)-generated.

Example (Kechris–Rosendal, 2007)

\(S_\infty\) is topologically 2-generated, as are many other automorphism groups of countable structures.
Topological generating sets - examples

Example

Topologically 1-generated groups are also called **monothetic**.
$(\mathbb{R}/\mathbb{Z})^n$ has this property for all n, as does the group $L_0 (\mathbb{T})$. These groups are also **generically monothetic**, i.e. generically 1-generated.

Example

\mathbb{R}^n is generically $(n + 1)$-generated.

Example (Kechris–Rosendal, 2007)

S_∞ is topologically 2-generated, as are many other automorphism groups of countable structures. However, a non-archimedean group can never be generically n-generated for any finite n.
Throughout today, $I := [0, 1]$.
Throughout today, $I := [0, 1]$.

Example

$H_+(I)$ is topologically 2-generated — for example, it famously contains Thompson’s group F as a dense subgroup.
Throughout today, $I := [0, 1]$.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_+ (I)$ is topologically 2-generated — for example, it famously contains Thompson’s group F as a dense subgroup.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example (Akhmedov–Cohen, 2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_+ (I)$ is generically 2-generated.</td>
</tr>
</tbody>
</table>
Throughout today, $I := [0, 1]$.

Example

$H_+ (I)$ is topologically 2-generated — for example, it famously contains Thompson’s group F as a dense subgroup.

Example (Akhmedov–Cohen, 2019)

$H_+ (I)$ is generically 2-generated.

Example (Akhmedov–Cohen, 2019)

$D_+^1 (I)$ is topologically 10-generated.
Throughout today, $I := [0, 1]$.

Example

$H_+(I)$ is topologically 2-generated — for example, it famously contains Thompson’s group F as a dense subgroup.

Example (Akhmedov–Cohen, 2019)

$H_+(I)$ is generically 2-generated.

Example (Akhmedov–Cohen, 2019)

$D^1_+(I)$ is topologically 10-generated. (The actual value of $\text{trk}(D^1_+)$ is likely lower, but it must be at least 3.)
Absolute continuity

All measure-theoretic notions are taken with respect to the usual Lebesgue measure λ.
Absolute continuity

All measure-theoretic notions are taken with respect to the usual Lebesgue measure λ. Recall the following from a first course in measure theory:

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A function $f: I \to \mathbb{R}$ is absolutely continuous if for every $\epsilon > 0$, there is a $\delta > 0$ such that for every finite, pairwise disjoint collection $(a_i, b_i){i < n}$ of open intervals in I, we have $\sum{i < n} b_i - a_i < \delta \Rightarrow \sum_{i < n}</td>
</tr>
</tbody>
</table>

Every Lipschitz continuous function is absolutely continuous, and every absolutely continuous function has bounded variation.
All measure-theoretic notions are taken with respect to the usual Lebesgue measure λ. Recall the following from a first course in measure theory:

Definition

A function $f : I \rightarrow \mathbb{R}$ is **absolutely continuous** if for every $\epsilon > 0$, there is a $\delta > 0$ such that for every finite, pairwise disjoint collection $((a_i, b_i))_{i < n}$ of open intervals in I, we have

$$\sum_{i < n} b_i - a_i < \delta \implies \sum_{i < n} |f(b_i) - f(a_i)| < \epsilon.$$
Absolute continuity

All measure-theoretic notions are taken with respect to the usual Lebesgue measure \(\lambda \). Recall the following from a first course in measure theory:

Definition

A function \(f : I \to \mathbb{R} \) is **absolutely continuous** if for every \(\epsilon > 0 \), there is a \(\delta > 0 \) such that for every finite, pairwise disjoint collection \(((a_i, b_i))_{i < n} \) of open intervals in \(I \), we have

\[
\sum_{i < n} (b_i - a_i) < \delta \quad \Rightarrow \quad \sum_{i < n} |f(b_i) - f(a_i)| < \epsilon.
\]

Every Lipschitz continuous function is absolutely continuous, and every absolutely continuous function has bounded variation.
Figure: The Cantor staircase is the canonical example of a non-abs cts function.
Theorem (Fundamental Theorem of Calculus for absolutely continuous functions)

For a function $f: I \to \mathbb{R}$, the following are equivalent:

(i) f is absolutely continuous;

(ii) f is differentiable almost everywhere, $f' \in L^1$, and we have $f(x) = f(0) + \int_0^x f'(t) \, dt$ for all $x \in I$;

(iii) There exists a map $g \in L^1$ such that $f(x) = f(0) + \int_0^x g(t) \, dt$ for all $x \in I$.
Theorem (Fundamental Theorem of Calculus for absolutely continuous functions)

For a function $f : I \rightarrow \mathbb{R}$, the following are equivalent:

(i) f is absolutely continuous;

(ii) f is differentiable almost everywhere, $f' \in L^1$, and we have

$$f(x) = f(0) + \int_0^x f'(t) \, dt$$

for all $x \in I$;

(iii) There exists a map $g \in L^1$ such that

$$f(x) = f(0) + \int_0^x g(t) \, dt$$

for all $x \in I$.

Absolute continuity

Theorem (Fundamental Theorem of Calculus for absolutely continuous functions)

For a function $f : I \to \mathbb{R}$, the following are equivalent:

(i) f is absolutely continuous;

(ii) f is differentiable almost everywhere, $f' \in L_1$, and we have
$$f(x) = f(0) + \int_0^x f'(t) \, dt \text{ for all } x \in I;$$

(iii) There exists a map $g \in L_1$ such that
$$f(x) = f(0) + \int_0^x g(t) \, dt \text{ for all } x \in I.$$
Theorem (Fundamental Theorem of Calculus for absolutely continuous functions)

For a function $f : I \to \mathbb{R}$, the following are equivalent:

(i) f is absolutely continuous;

(ii) f is differentiable almost everywhere, $f' \in L_1$, and we have $f(x) = f(0) + \int_0^x f'(t) \, dt$ for all $x \in I$;

(iii) There exists a map $g \in L_1$ such that $f(x) = f(0) + \int_0^x g(t) \, dt$ for all $x \in I$.
Absolutely continuous homeomorphisms

Definition
The group H_{AC}^+ is the subgroup of H^+ given by:

$$H_{AC}^+ := \{ f \in H^+ : f \text{ and } f^{-1} \text{ are absolutely continuous} \}.$$

Equip H_{AC}^+ with the metric $d_{AC}(f, g) := \| f' - g' \|_1$. Thus, the map $H_{AC}^+ \ni f \mapsto f' \in L^1$ is an isometry.

Theorem (Solecki, 1995)
The metric d_{AC} induces a Polish topology on H_{AC}^+, which is finer than the one inherited from H^+.
Absolutely continuous homeomorphisms

Definition

The group H_{+}^{AC} is the subgroup of H_{+} given by:

$$H_{+}^{AC} := \{ f \in H_{+} : f \text{ and } f^{-1} \text{ are absolutely continuous} \}.$$
The group H_{++}^{AC} is the subgroup of H_+ given by:

\[H_{++}^{AC} := \{ f \in H_+ : f \text{ and } f^{-1} \text{ are absolutely continuous} \} \, . \]

Equip H_{++}^{AC} with the metric $d_{AC}(f, g) := \|f' - g'\|_1$. Thus, the map $H_{++}^{AC} \ni f \mapsto f' \in L_1$ is an isometry.
Absolutely continuous homeomorphisms

Definition

The group H_{+}^{AC} is the subgroup of H_{+} given by:

$$H_{+}^{AC} := \{ f \in H_{+} : f \text{ and } f^{-1} \text{ are absolutely continuous} \}.$$

Equip H_{+}^{AC} with the metric $d_{AC}(f, g) := \|f' - g'\|_1$. Thus, the map $H_{+}^{AC} \ni f \mapsto f' \in L_1$ is an isometry.

Theorem (Solecki, 1995)

The metric d_{AC} induces a Polish topology on H_{+}^{AC}, which is finer than the one inherited from H_{+}.
Aside: subgroups of H_+
Theorem (Akhmedov–Cohen, 2019)

$H_+ (I)$ is generically 2-generated.
Theorem (Akhmedov–Cohen, 2019)

$H_+(I)$ is generically 2-generated.

Suffices to show Ω_2 is dense. Fix $f, g \in H_+$, and $\epsilon > 0$. We will build $\tilde{f}, \tilde{g} \in H_+$ such that $d\left(f, \tilde{f}\right) < \epsilon$, $d\left(g, \tilde{g}\right) < \epsilon$, and $\Gamma := \langle \tilde{f}, \tilde{g} \rangle$ is dense in H_+.
Theorem (Akhmedov–Cohen, 2019)

$H_+ (I)$ is generically 2-generated.

Suffices to show Ω_2 is dense. Fix $f, g \in H_+$, and $\epsilon > 0$. We will build $\tilde{f}, \tilde{g} \in H_+$ such that $d \left(f, \tilde{f} \right) < \epsilon$, $d \left(g, \tilde{g} \right) < \epsilon$, and $\Gamma := \langle \tilde{f}, \tilde{g} \rangle$ is dense in H_+.

The set $\{(f, g) : \text{Fix}(f) \cap \text{Fix}(g) = \{0, 1\}\}$ is dense, so without loss of generality, we assume f and g do not share any fixed points in $(0, 1)$.
Constructing \(\tilde{f} \) and \(\tilde{g} \)

Sketch of the construction of \(\tilde{f} \) and \(\tilde{g} \):

- Fix \(\alpha > 0 \) small
- Let \(\tilde{g} \) have the following properties:
 - \(\tilde{g} \) agrees with \(g \) on \([\alpha, 1] \)
 - There is \(y_0 \in (0, \alpha) \) such that \(\tilde{g}(y_0) = y_0 \) and \(\tilde{g}(x) > x \) for all \(x \in (0, y_0) \).
- Fix an arbitrary \(x_0 \in (0, y_0) \), and let \(x_n = \tilde{g}^{-n}(x_0) \).
- Fix elements \(\phi_0, \phi_1 \in H^+(x_1, x_0) \) that generate a dense subgroup of \(H^+(x_1, x_0) \).
- Let \(\tilde{f} \) have the following properties:
 - \(\tilde{f} \) agrees with \(f \) on \([\alpha, 1] \)
 - \(\tilde{f} \) shares no fixed point with \(\tilde{g} \) on \((y_0, \alpha) \)
 - \(\tilde{f}(x) > x \) for all \(x \in (x_0, y_0] \)
 - On \([x_n+1, x_n] \), \(\tilde{f} \) agrees with \(\tilde{g}^{-n} \circ \phi_0 \circ \tilde{g}^n \) for \(n \) even and \(\tilde{g}^{-n} \circ \phi_1 \circ \tilde{g}^n \) for \(n \) odd.
Constructing \tilde{f} and \tilde{g}

Sketch of the construction of \tilde{f} and \tilde{g}:

- Fix $\alpha > 0$ small
Constructing \tilde{f} and \tilde{g}

Sketch of the construction of \tilde{f} and \tilde{g}:

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:
Sketch of the construction of \tilde{f} and \tilde{g}:

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:
 - \tilde{g} agrees with g on $[\alpha, 1]$
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g}(y_0) = y_0$ and $\tilde{g}(x) > x$ for all $x \in (0, y_0)$.
- Fix an arbitrary $x_0 \in (0, y_0)$, and let $x_n := \tilde{g}^{-n}(x_0)$.
- Fix elements $\phi_0, \phi_1 \in H_+([x_1, x_0])$ that generate a dense subgroup of $H_+([x_1, x_0])$.
- Let \tilde{f} have the following properties:
 - \tilde{f} agrees with f on $[\alpha, 1]$
 - \tilde{f} shares no fixed point with \tilde{g} on (y_0, α)
 - $\tilde{f}(x) > x$ for all $x \in (x_0, y_0)$
 - On $[x_n + 1, x_n]$, \tilde{f} agrees with $\tilde{g}^{-n} \circ \phi_0 \circ \tilde{g}^n$ for n even and $\tilde{g}^{-n} \circ \phi_1 \circ \tilde{g}^n$ for n odd.
Constructing \tilde{f} and \tilde{g}

Sketch of the construction of \tilde{f} and \tilde{g}:

- **Fix** $\alpha > 0$ small
- **Let** \tilde{g} have the following properties:
 - \tilde{g} agrees with g on $[\alpha, 1]$
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g}(y_0) = y_0$ and $\tilde{g}(x) > x$ for all $x \in (0, y_0)$.
- **Fix** an arbitrary $x_0 \in (0, y_0)$, and let $x_n := \tilde{g}^{-n}(x_0)$.
Constructing \tilde{f} and \tilde{g}

Sketch of the construction of \tilde{f} and \tilde{g}:

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:
 - \tilde{g} agrees with g on $[\alpha, 1]$
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g}(y_0) = y_0$ and $\tilde{g}(x) > x$ for all $x \in (0, y_0)$.
- Fix an arbitrary $x_0 \in (0, y_0)$, and let $x_n := \tilde{g}^{-n}(x_0)$.
- Fix elements $\phi_0, \phi_1 \in H_+([x_1, x_0])$ that generate a dense subgroup of $H_+([x_1, x_0])$.
Constructing \tilde{f} and \tilde{g}

Sketch of the construction of \tilde{f} and \tilde{g}:

• Fix $\alpha > 0$ small

• Let \tilde{g} have the following properties:
 - \tilde{g} agrees with g on $[\alpha, 1]$
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g} (y_0) = y_0$ and $\tilde{g} (x) > x$
 for all $x \in (0, y_0)$.

• Fix an arbitrary $x_0 \in (0, y_0)$, and let $x_n := \tilde{g}^{-n} (x_0)$.

• Fix elements $\phi_0, \phi_1 \in H_+ ([x_1, x_0])$ that generate a dense subgroup of $H_+ ([x_1, x_0])$.

• Let \tilde{f} have the following properties:
Constructing \tilde{f} and \tilde{g}

Sketch of the construction of \tilde{f} and \tilde{g}:

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:
 - \tilde{g} agrees with g on $[\alpha, 1]
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g}(y_0) = y_0$ and $\tilde{g}(x) > x$ for all $x \in (0, y_0)$.
- Fix an arbitrary $x_0 \in (0, y_0)$, and let $x_n := \tilde{g}^{-n}(x_0)$.
- Fix elements $\phi_0, \phi_1 \in H_+([x_1, x_0])$ that generate a dense subgroup of $H_+([x_1, x_0])$.
- Let \tilde{f} have the following properties:
 - \tilde{f} agrees with f on $[\alpha, 1]
 - \tilde{f} shares no fixed point with \tilde{g} on $(y_0, \alpha)
 - $\tilde{f}(x) > x$ for all $x \in (x_0, y_0]
 - On $[x_{n+1}, x_n]$, \tilde{f} agrees with $\tilde{g}^{-n} \circ \phi_0 \circ \tilde{g}^n$ for n even and $\tilde{g}^{-n} \circ \phi_1 \circ \tilde{g}^n$ for n odd.
Why this works

• For any \(n \), \(\tilde{f} \downarrow [x^n+1, x^n] \)
 and \(\tilde{g} \downarrow [x^n+1, x^n] \) generate a dense subgroup of \(H^+(\mathbb{R}) \).

• \(\tilde{f} \) and \(\tilde{g} \) do not share any fixed points. Thus, for any \(x > 0 \) and \(y < 1 \), there is \(h \in \Gamma \) such that \(h(x) > y \).

• Using this, one shows that for any \(\lambda > 0 \), there is \(\Phi \in \Gamma \) and some \([a, b] \subseteq \mathbb{R} \) such that
 \(a < \lambda < 1 - \lambda < b \), and \(\Phi \tilde{f} \Phi^{-1} \downarrow [a, b] \) and \(\Phi \tilde{g} \Phi^{-1} \downarrow [a, b] \) generate a dense subgroup of \(H^+(\mathbb{R}) \).
Why this works

- For any \(n \), \(\tilde{f} \mid_{[x_{n+1}, x_n]} \) and \(\tilde{g} \tilde{f} \tilde{g}^{-1} \mid_{[x_{n+1}, x_n]} \) generate a dense subgroup of \(H_+ ([x_{n+1}, x_n]) \).
Why this works

• For any n, $\tilde{f}|_{[x_{n+1}, x_n]}$ and $\tilde{g}\tilde{f}\tilde{g}^{-1}|_{[x_{n+1}, x_n]}$ generate a dense subgroup of $H_+([x_{n+1}, x_n])$.

• \tilde{f} and \tilde{g} do not share any fixed points. Thus, for any $x > 0$ and $y < 1$, there is $h \in \Gamma$ such that $h(x) > y$.
Why this works

- For any n, $\tilde{f}|_{[x_{n+1}, x_n]}$ and $\tilde{g}\tilde{f}\tilde{g}^{-1}|_{[x_{n+1}, x_n]}$ generate a dense subgroup of $H_+ ([x_{n+1}, x_n])$.

- \tilde{f} and \tilde{g} do not share any fixed points. Thus, for any $x > 0$ and $y < 1$, there is $h \in \Gamma$ such that $h(x) > y$.

- Using this, one shows that for any $\lambda > 0$, there is $\Phi \in \Gamma$ and some $[a, b] \subseteq I$ such that $a < \lambda < 1 - \lambda < b$, and $\Phi\tilde{f}\Phi^{-1}|_{[a, b]}$ and $\Phi\tilde{g}\tilde{f}\tilde{g}^{-1}\Phi^{-1}$ generate a dense subgroup of $H_+ ([a, b])$.
Where does this proof need more work for the abs cts case?
The H^{AC}_+ case

Where does this proof need more work for the abs cts case?

- Need to show $F := \{(f, g) : \text{Fix}(f) \cap \text{Fix}(g) = \{0, 1\}\}$ dense in $(H^{AC}_+)^2$.
The H_{+}^{AC} case

Where does this proof need more work for the abs cts case?

- Need to show $F := \{(f, g) : \text{Fix}(f) \cap \text{Fix}(g) = \{0, 1\}\}$ dense in $(H_{+}^{AC})^2$.
- Need to choose α even smaller to guarantee $d_{AC}(g, \tilde{g}) < \epsilon$.
Where does this proof need more work for the abs cts case?

- Need to show \(F := \{(f,g) : \text{Fix}(f) \cap \text{Fix}(g) = \{0,1\}\} \) dense in \((H^\text{AC}_+)^2\).
- Need to choose \(\alpha \) even smaller to guarantee \(d_{\text{AC}}(g, \tilde{g}) < \epsilon \).
- Need more \(\phi_i \)'s to generate a dense subgroup of \(H^\text{AC}_+([x_1, x_0]) \).
The H_{+}^{AC} case

Where does this proof need more work for the abs cts case?

- Need to show $F := \{(f, g) : \text{Fix}(f) \cap \text{Fix}(g) = \{0, 1\}\}$ dense in $(H_{+}^{AC})^2$.
- Need to choose α even smaller to guarantee $d_{AC}(g, \tilde{g}) < \epsilon$.
- Need more ϕ_i’s to generate a dense subgroup of $H_{+}^{AC}([x_1, x_0])$.
- Need to show why a dense subgroup of $H_{+}^{AC}([a, b])$ can approximate $H_{+}^{AC}(I)$.