One-ended spanning subforests
in pmp graphs of superquadratic growth

Last time...

- The number of ends of G is the supremum of the number of infinite connected components in $G|(X \setminus F)$ for $F \subseteq G$ finite.

Theorem

If G is hyperfinite, pmp, and almost nowhere 0 or 2 ended then G has an a.e. one-ended treeing.

This time...

Theorem (2.6) Suppose G is a pmp locally finite Borel graph on (X, μ) of superquadratic growth (i.e., $\exists c > 0$ s.t. $\forall r \exists r': 13r \leq c r'^2$) then G has a Borel a.e. one-ended spanning subforest

Note: Isoperimetric constant φ of G is

$$\varphi := \inf_{A \subseteq X \setminus \{x\}} \frac{\mu(2 \cdot A)}{\mu(A)}$$

where $x \in X$, $\mu(A) > 0$, and $G|_A$ is compact.
If $\gamma > 0$ then G_j has exponential growth, so Theorem applies.

Lemma (2.5) G_j a loc finite pmp Borel graph on (X, μ) & there are partial Borel functions $f_0, f_1, \ldots \subseteq G_j$ s.t.

1. $\text{Udom}(f_i) = X$
2. $\sum \mu(\text{dom}(f_i)) < \infty$
3. Each f_i is aperiodic & has finite back orbits, i.e., $\forall x \exists y \in X : \exists n \in \mathbb{N} : f_n^i y = x$ finite
4. $\forall i \& \forall x \in \text{dom}(f_i)$ there is $j \geq i$ with $f_i(x) \in \text{dom}(f_j)$

Then G_j has a Borel a.e. one-ended spanning subforest

Idea: Put the f_i's together to get a Borel (full) $f : X \to X \subseteq G_j$ aperiodic & has finite back orbits
Proof. \(B = \{ x : \exists i \in \mathbb{N} \text{ s.t. } x \in \text{dom}(f_i) \} \) is null

\[= \limsup (\text{dom}(f_i)) \]

So we may assume WLOG that \(\forall x \in X \)
\[\exists i \in \mathbb{N} : x \in \text{dom}(f_i) \] is nonempty & finite

Define \(f : X \to X \subseteq G \)

\[x \mapsto f_{n(x)}(x) \]

where \(n(x) := \max \{ i \in \mathbb{N} : x \in \text{dom}(f_i) \} \)

By (4), \(n(x) \) is non-decreasing along \(f \)-orbits

\[\begin{array}{c}
 x \\
 \xrightarrow{f} f_4 \\
 \xrightarrow{f} f_{f_4} \\
 \xrightarrow{f} f_{f_{f_4}} \\
 \xrightarrow{f} \vdots
\end{array} \]

So \(f \) is aperiodic by this fact & (3)

By (3), each \(f_i \) has finite backward orbits

so \(f \) does as well.
Theorem (2.6) Suppose G is a pmp locally finite Borel graph on (X, μ) of super-quadratic growth (i.e., $\exists c > 0$ s.t. $\forall x \forall r \exists B_r(x) | \geq cr^2$) then G has a Borel a.e. one-ended spanning subforest.

Proof: We'll come up with $f_i \leq G$ satisfying (1) - (4) from lemma.

Let $r_n := 2^n$

(s0 $\sum_{n=0}^{\infty} \frac{2^{r_{n+1}}}{c r_n^2} < \infty$)

Put $A_0 := X$

for $n > 1$ let A_n be Borel & maximal wrt the fact that for $x \neq y \in A_n$,

$B_{r_n}(x) \cap B_{r_n}(y) = \emptyset$
Def. of \(f_n \): for \(x \in A_n \) take \(\text{lex} \)
least minimal length path from \(x \) to a point \(y \in A_{n+1} \)
\[x = x_0, x_1, x_2, \ldots, x_k = y \]
Define \(f_n \) to be the union of the pairs \((x_i, x_{i+1}) \) in these paths.

So \(f_i \leq G_j \) are partial Borel functions.

(1) holds since \(A_n \leq \text{dom}(f_n) \)
\[A_0 = X \]

(3): aperiodic & finite back orbits
minimality of paths & lengths of paths are bounded (by maximality of \(A_n \)).

(4): \(x \in \text{dom}(f_i) \Rightarrow f_i(x) \in \text{dom}(f_j) \)
\[j \geq i \]
If \(f_i(x) \) was in the middle of a path then \(f_i(x) \in \text{dom}(f_i) \)
Otherwise \(f_i(x) \in A_{i+1} \leq \text{dom}(f_{i+1}) \)
(2) \[\sum \mu(\text{dom}(f_n)) < \infty \]

By maximality of \(A_{n+1} \), the length of a path from \(x \in X \) to \(y \in A_{n+1} \)
\[\leq 2r_{n+1} \]

\[\Rightarrow \mu(\text{dom}(f_n)) \leq 2r_{n+1} \mu(A_n) \leq \frac{2r_{n+1}}{Cr_n} \]

since \(\mu(A_n) \leq \frac{1}{Cr_n} \)

Define \(E_n := \) being in the same ball of radius \(r_n \) for \(x \in A_n \)

\[\int f(x) \, d\mu(x) = \int \text{Average of} \ f \ \text{over equivalence class of} \ x \]
Isoperimetric constant $\gamma > 0$

then we have exponential growth

$$\forall x \in X \quad |B_n(x)| \geq (1 + \gamma)^n$$

Proof by induction $|B_0(x)| = 1$

Suffices to show $|B_{n+1}(x)| \geq (1 + \gamma)|B_n(x)|$

for μ-a.e. $x \in X$

If not, we can take a maximal disjoint collection of balls of radius $n+1$

(which \leftrightarrow Borel) around points x

with $|B_{n+1}(x)| < (1 + \gamma)|B_n(x)|$

$$A := \bigcup_{x \in X} B_n(x) \quad \Rightarrow \quad A \text{ is Borel, positively measured}$$

$$\mu(\partial \delta A) \leq \gamma \mu(A) \implies \frac{\mu(\partial \delta A)}{\mu(A)} \leq \gamma$$

□