“One-ended spanning subforests and treeability of groups”
by Conley–Gaboriau–Marks–Tucker-Drob

Ronnie Chen

May 28, 2021
Preliminaries

- countable Borel equivalence relation (CBER) \(E \) (or \(R \)) \(\subseteq X^2 \):
 \[E \subseteq X^2 \text{ Borel, } (x)E \text{ is } 1 \text{-} \text{bl} \quad \forall x \in X. \]

- for Borel \(\Gamma \rhd X \), orbit equivalence relation \(E_\Gamma \) (or \(R_\Gamma \))
 \[x E_\Gamma y : \iff \exists \gamma \in \Gamma \text{ s.t. } x = \gamma y \]

- for a Borel graph \(G \subseteq X^2 \), \(E_G \) (or \(R_G \))
 \[x E_G y : \iff \exists x = x_0 x_1 \cdots x_n = y \]

- \(G \) is a graphing
- \(G \) is a treeing if furthermore, \(G \) is acyclic

Example: If \(\Gamma \rhd X \) and \(\Gamma = \langle S \rangle \)
 \[x \rho y : \iff \exists i \in S \text{ s.t. } x = y \]

- for a Borel measure \(\mu \) on \(X \), a property of \(E \) holds \(\mu \)-a.e. if it holds on an \(E \)-in \(\mu \)-almost-null set.
Planar graphs are measure treeable

Theorem (CGMT 2021)

Let $G \subseteq X$ be a locally finite Borel planar* graph. Then for any Borel probability measure μ on X, G has a Borel subtreeing μ-a.e. In particular, E_G is treeable μ-a.e.

"each component is planar"

\exists Borel acyclic $T \subseteq G$ s.t. $E_T = E_G$.
A graph G on vertices X is **planar** if \exists a planar embedding $f: X \to \mathbb{R}^2$, \&

$$
\begin{align*}
& f_e: [0,1] \to \mathbb{R}^2, \quad \text{for each } e = (x,y) \in E, \text{ which map distinct images except at endpoints.} \\
& \text{A facial cycle } (e_1, \ldots, e_n) \text{ is a cycle whose image under } f \text{ is a cut for a bounded } K \text{ of } \mathbb{R}^2 \text{ in } f.
\end{align*}
$$

- each edge belongs to at least 2 facial cycles
- the characteristic functions of facial cycles are linearly independent over $\mathbb{Z}/2\mathbb{Z}$
- (if X is finite) they span the characteristic functions of all cycles over $\mathbb{Z}/2\mathbb{Z}$

A 2-basis in G is a family of cycles obeying these 3 conditions.

Theorem (Mac Lane 1937)

If X is finite, each 2-basis is the set of facial cycles for see planar embedding.
An **accumulation point** of a planar embedding $f : (X, G) \to \mathbb{R}^2$ is a point which is a limit of an infinite sequence of distinct vertices or edges.

Example

![Diagram of a planar graph with accumulation points indicated]

Theorem (Thomassen 1980)

- If a planar embedding has no accumulation points, the facial cycles form a 2-basis.
- If G is locally finite, each 2-basis is given by a planar embedding.

A Borel graph $G \subseteq X^2$ is **Borel planar** if it has a Borel 2-basis as a subset of $[x]^{\mathbb{N}}$.
Planar groups are measure treeable

Theorem (CGMT 2021)

Let $G \subseteq X$ be a locally finite Borel planar graph. Then for any Borel probability measure μ on X, G has a Borel subtreeing μ-a.e. In particular, E_G is treeable μ-a.e.

Corollary (CGMT 2021)

If Γ acts freely on a connected planar graph with equivariant 2-basis, then every free Borel Γ-action is treeable μ-a.e. for every Borel probability measure μ.

\[\Gamma \text{ is measure-strongly-treeable} \implies \Gamma \text{ strongly-treeable} \implies \Gamma \text{ treeable} \]

Every proper action is treeable

\[\text{if a proper treeable action} \]
Let Σ be a closed orientable surface. Its fundamental group $\pi_1(\Sigma)$ is

\[\langle a_1, b_1, \ldots, a_n, b_n \rangle / \text{its relations} \]

\[a_1 b_1 a_1^{-1} b_1^{-1} a_2 b_2 a_2^{-1} b_2^{-1} \cdots \]

Every surface Σ (except S^2) is a free quotient $\tilde{\Sigma}/\pi_1(\Sigma)$ where $\tilde{\Sigma} \cong \mathbb{R}^2$.

Corollary (CGMT 2021)

Every free Borel action of $\pi_1(\Sigma)$ is treeable μ-a.e.
Theorem (CGMT 2021)

Let $G \subseteq X$ be a locally finite Borel planar graph. Then for any Borel probability measure μ on X, G has a Borel subtreeing μ-a.e. In particular, E_G is treeable μ-a.e.

A group Γ is **elementarily free** if it is elementarily equivalent to \mathbb{F}_2.

Corollary (CGMT 2021)

Every free Borel action of a f.g. elementarily free group is treeable μ-a.e.

Proof uses an explicit construction of a space X with $\pi_1(X) \cong \Gamma$ (Sela 2006, Guirardel–Levitt–Sklinos 2020).
Some other treeable groups

Theorem (CGMT 2021)

Let $G \subseteq X$ be a locally finite Borel planar graph. Then for any Borel probability measure μ on X, G has a Borel subtreeing μ-a.e. In particular, E_G is treeable μ-a.e.

A group Γ is **elementarily free** if it is elementarily equivalent to \mathbb{F}_2.

Corollary (CGMT 2021)

Every free Borel action of a f.g. elementarily free group is treeable μ-a.e.

Proof uses an explicit construction of a space X with $\pi_1(X) \cong \Gamma$ (Sela 2006, Guirardel–Levitt–Sklinos 2020).

Corollary (CGMT 2021)

Every free Borel action of $\text{Isom}(\mathbb{H}^2)$ is treeable μ-a.e.
Let G be a graph on X. An **end** in G is "

For each finite $F \subseteq X$, look at $\pi_0(G| (X \setminus F)) :=$

For finite $F_0 \subseteq F_1 \subseteq X$,

The **space of ends** of (X, G) is $\partial G :=$

If G is locally finite:
One-ended spanning subforests

Let $G \subseteq X^2$ be a Borel graph. A one-ended spanning subforest is

Conjecture (CGMT 2021)

Let $G \subseteq X^2$ be a locally finite Borel graph with $E_G \mu$-a.e. nonsmooth. TFAE:

(i) G is μ-a.e. not 2-ended.
(ii) G has a Borel one-ended spanning subforest μ-a.e.

►
► (CMT 2016)
► (CGMT 2021)
Cutting cycles along a one-ended subforest

<table>
<thead>
<tr>
<th>Theorem (CGMT 2021)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $G \subseteq X$ be a locally finite Borel planar graph. Then for any Borel probability measure μ on X, G has a Borel subtreeing μ-a.e.</td>
</tr>
</tbody>
</table>

Proof idea:
<table>
<thead>
<tr>
<th>Corollary (CGMT 2021)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a compact surface Σ, every free Borel action of $\pi_1(\Sigma)$ is treeable μ-a.e.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (CGMT 2021)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a compact aspherical n-manifold M, every free Borel action of $\pi_1(M)$ admits a “Borel family of contractible $(n - 1)$-dim’l simplicial complexes on each class”, up to μ-a.e. Borel reducibility.</td>
</tr>
</tbody>
</table>