Measure theory with ergodic horizons HOMEWORK 9 Due: Apr 27

(a) Let (X, B) and (Y, C) be measurable spaces and let T : X → Y be a (B, C)-measurable map. Prove the change of variable formula: for each measure μ on B and a measurable f ∈ L¹(Y, C, T_{*}μ),

$$\int_X (f \circ T) \, d\mu = \int_Y f \, d(T_*\mu).$$

(b) As an application, let $T_A : \mathbb{R}^d \to \mathbb{R}^d$ be the linear transformation given by a $d \times d$ invertible matrix A, i.e. Tx := Ax. Let λ denote the Lebesgue measure on \mathbb{R}^d and prove that $T_*\lambda = |\det A|^{-1}\lambda$, to conclude that

$$\int (f \circ T_A) d\lambda = \int f |\det A|^{-1} d\lambda.$$

REMARK: You may use without proof that when e_1, \ldots, e_d is the standard basis for \mathbb{R}^d , the value $|\det A|$ is the "volume" (i.e. the Lebesgue measure) of the paralellepiped on Ae_1, \ldots, Ae_d .

(c) As another application, prove the following simple statement, which I call the local-global bridge lemma.

Lemma (Local-global bridge). Let $T : X \to X$ be a measure-preserving $(\mathcal{B}, \mathcal{B})$ -measurable transformation (not necessarily injective) on a measure space (X, \mathcal{B}, μ) . Then for each $f \in L^1(X, \mu)$ and $n \in \mathbb{N}$,

$$\int f \, d\mu = \int A_n f \, d\mu,$$

where $A_n f(x)$ is the average of f over the set $\{x, Tx, T^2x, ..., T^nx\}$, i.e.

$$A_n f := \frac{1}{n+1} \sum_{i=0}^n f \circ T^i.$$

- **2.** Let (X, μ) be a σ -finite measure space.
 - (a) Prove that the simple functions are dense in $L^1(X, \mu)$.
 - (b) Suppose that Meas_{μ} is countably generated mod μ ; this means that there is a countable family \mathcal{F} of μ -measurable sets such that for each μ -measurable set $M \subseteq X$ there is a set $B \in \langle \mathcal{F} \rangle_{\sigma}$ with $M =_{\mu} B$. Then $L^{1}(X, \mu)$ is separable, i.e. admits a countable dense subset.