Measure theory with ergodic horizons

Homework 8

Due: Apr 22

- **1.** Let μ be a locally finite Borel measure on \mathbb{R} . Recall that we call $f : \mathbb{R} \to \mathbb{R}$ a **distribution** of μ if $\mu((a,b)) = f(b) - f(a)$ for all reals $a \le b$. Let f be a distribution of μ .
 - (a) Prove that $\lim_{x \nearrow a^-} f(x) + \mu(\{a\}) = f(a)$.
 - (b) Conclude that if μ is atomless, then f is continuous.
- 2. Let (X, μ) be a measure space. Prove that the integral of simple functions is well-defined, i.e. for all μ -measurable sets $A_i, B_i \subseteq X$ and $a_i, b_i \in \mathbb{R}$,

$$\sum_{i < n} a_i \mathbb{1}_{A_i} = \sum_{j < m} b_j \mathbb{1}_{B_j} \text{ implies } \sum_{i < n} a_i \mu(A_i) = \sum_{j < m} b_j \mu(B_j).$$

- **3.** Let (X, μ) be a measure space. Prove that a μ -measurable function $f: X \to \mathbb{R}$ is simple if and only if its image f(X) is finite.
- **4.** Let (X, \mathcal{B}, μ) be a probability space and let $T : X \to X$ be a $(\mathcal{B}, \mathcal{B})$ -measurable transformation (not necessarily one-to-one). Suppose T preserves μ , i.e. $T_*\mu = \mu$; in other words, $\mu(T^{(B)}) = \mu(B)$ for each $B \in \mathcal{B}$.
 - (a) A set $W \subseteq X$ is called *T*-wandering if the sets $T^{-n}(W)$ are pairwise disjoint for $n \in \mathbb{N}$, i.e. $T^{-n}(W) \cap T^{-m}(W) = \emptyset$ for all distinct $n, m \in \mathbb{N}$. Prove that every Twandering set in \mathcal{B} is null.
 - (b) Call a set $B \subseteq X$ is called *T*-recurrent if every $x \in B$ admits an $n \in \mathbb{N}^+$ with $T^n(x) \in B$. Prove the following:

Theorem (Poincaré recurrence). *Every set* $B \in \mathcal{B}$ *is* T*-recurrent a.e., more precisely,* there is a *T*-recurrent set $B' \subseteq B$ with $B' =_{\mu} B$.

HINT: B' is the set of points of B that "see" infinitely many points of B in front of them.