Measure theory with	Homework 7	Duce Apr 15
ergodic horizons	TIOMEWORK 7	Due: Apr 15

- 1. Let (X, μ) be a measure space¹ and let $f_n : X \to \mathbb{R}$ be a sequence of measurable functions. Prove that $\limsup_{n\to\infty} f_n$ and $\liminf_{n\to\infty} f_n$ are both μ -measurable. In particular, if $\lim_{n\to\infty} f_n$ exists, then it is μ -measurable. (We have proved this last statement in class for an arbitrary separable metric space in place of \mathbb{R} .)
- **2.** Prove that universally measurable functions are closed under compositions. More precisely, if *X*, *Y*, *Z* are topological spaces, and $f : X \to Y$ and $g : Y \to Z$ are universally measurable functions, then $g \circ f : X \to Z$ is universally measurable.
- 3. Learn the proof of the Cantor–Schröder–Bernstein theorem from this note.
- 4. Prove the (following) measure isomorphism theorem for standard infinite measure spaces using the measure isomorphism theorem for standard probability spaces.

Theorem (Measure Isomorphism). Every atomless standard infinite measure space 2 (X, \mathcal{B}, μ) is measure-isomorphic to ($\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda$). Moreover, there is a Borel isomorphism $f : X \to \mathbb{R}$ such that $f_*\mu = \lambda$.

REMARK: Because I stated measure isomorphism for standard probability spaces with the closed interval [0,1], you may need to fiddle with a countable set to get the "more-over" part of the theorem. It's not important, so you may ignore the "moreover" part.

¹We omit the σ -algebra from the notation when we only use the σ -algebra of measurable sets.

²Recall that (X, \mathcal{B}, μ) being a **standard measure space** means that X is a Polish space, \mathcal{B} is its Borel σ -algebra, and μ is a σ -finite Borel measure.