Due: Apr 8

Measure theory with	Homework 6
ergodic horizons	HOMEWORK 0

1. Follow the steps below to prove the **Steinhaus theorem**: For every Lebesgue measurable non-null set $A \subseteq \mathbb{R}^d$, the difference set $A - A := \{a_0 - a_1 : a_0, a_1 \in A\}$ contains an open neighbourhood of $\vec{0}$.

TIP: For simplicity of thought and pictures, only think of d = 1 and replace boxes with intervals.

- (i) Check that for all sets $U, V \subseteq \mathbb{R}^d$, we have $U \subseteq V V$ if and only if $(V + u) \cap V \neq \emptyset$ for each $u \in U$.
- (ii) Let *B* be a nonempty bounded open box whose at least $(1-1/2^{d+2})100\%$ is *A*. Let b_0 be the midpoint of *B* and put $U := B b_0$, so *U* is an open box centered at $\vec{0}$. Show that for each $u \in U$, the intersection $B_u := B + u \cap B$ is a box whose each dimension is at least half of that of *B*, so B_u occupies at least $(1/2^d)100\%$ of *B* and of B + u.
- (iii) Conclude that at least 75% of B_u is A while at least 75% of B_u is A+u, so $A+u \cap A \neq \emptyset$ for each $u \in U$, hence $U \subseteq A A$.

Remark: The exact same theorem holds for the Bernoulli(1/2) measure on $2^{\mathbb{N}}$ identified with the group $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$. As usual, the proof is easier than for the Lebesgue measure.

- 2. Use the 99% lemma to prove that the equivalence relation \mathbb{E}_0 on $2^{\mathbb{N}}$ is $\mu_{1/2}$ -ergodic. Remark: \mathbb{E}_0 is actually μ_p -ergodic for all $p \in (0, 1)$, although the action of the group $\bigoplus_{n \in \mathbb{N}} \mathbb{Z}/2\mathbb{Z}$ on $2^{\mathbb{N}}$ that induces \mathbb{E}_0 does not preserve μ_p for $p \neq 1/2$. Try proving this, thinking about whether it is *really* used in your argument for $\mu_{1/2}$ that the action of the group $\bigoplus_{n \in \mathbb{N}} \mathbb{Z}/2\mathbb{Z}$ preserves $\mu_{1/2}$.
- **3.** Let Γ be a countable group and (X, \mathcal{B}, μ) be nonzero atomless measure space. Let $\alpha : \Gamma \curvearrowright X$ be an action of Γ on X mapping sets in \mathcal{B} to sets in \mathcal{B} , i.e. $\gamma \cdot B \in \mathcal{B}$ for each $\gamma \in \Gamma$ and $B \in \mathcal{B}$. Suppose that this action is **null-preserving**, i.e. $\gamma \cdot B$ is null if and only if B is null for each $\gamma \in \Gamma$ and $B \in \mathcal{B}$. Prove that if this action is *ergodic*, then the orbit equivalence relation E_{α} does not admit any μ -measurable transversal.

HINT: For any subset $B \subseteq X$, the set $[B]_{E_{\alpha}} := \bigcup_{\gamma \in \Gamma} \gamma \cdot B$ is the least E_{α} -invariant set containing B.

- **4.** Let A_1, A_2, \dots, A_d be σ -algebras on sets X_1, X_2, \dots, X_d , and denote by $A_1 \otimes A_2 \otimes \dots \otimes A_d$ the σ -algebra on $X_1 \times X_2 \times \dots \times X_d$ generated by the sets of the form $A_1 \times A_2 \times \dots \times A_d$.
 - (a) Prove that for all second countable topological spaces X_1, X_2, \ldots, X_d ,

$$\mathcal{B}(\prod_{i=1}^d X_i) = \bigotimes_{i=1}^d \mathcal{B}(X_i).$$

(Here $\prod_{i=1}^{d} X_i$ is the product topology.) In particular, $\mathcal{B}(\mathbb{R}^d) = \bigotimes_{i=1}^{d} \mathcal{B}(\mathbb{R})$.

- (b) Let (X, \mathcal{A}) and (Y_i, \mathcal{B}_i) , i = 1, 2, be measurable spaces, i.e., sets equipped with σ -algebras. Prove that for $(\mathcal{A}, \mathcal{B}_i)$ -measurable functions $f_i : X \to Y_i$, the function $(f_1, f_2) : X \to Y_1 \times Y_2$ defined by $x \mapsto (f_1(x), f_2(x))$ is $(\mathcal{A}, \mathcal{B}_1 \otimes \mathcal{B}_2)$ -measurable.
- (c) Now let (X, μ) be a measure space¹ and conclude that if $f_1, f_2 : X \to \mathbb{R}$ are μ -measurable and $g : \mathbb{R}^2 \to \mathbb{R}$ is Borel, then $g(f_1, f_2) : X \to \mathbb{R}$ is μ -measurable. In particular, $f_1 + f_2$ and $f_1 \cdot f_2$ are μ -measurable.
- **5.** For an equivalence relation *E* on a set *X*, a **selector** is a function $s : X \to X$ that picks a point from each *E*-class, more precisely, s(x)Ex and $xEy \Leftrightarrow s(x) = s(y)$ for all $x, y \in X$. By a selector/transversal for a group action, we mean that for its orbit equivalence relation.

Let Γ be a countable group and (X, μ) be a second countable metric space equipped with a Borel measure μ . Let $\alpha : \Gamma \curvearrowright X$ be a **Borel action** of Γ , i.e. each group element $\gamma \in \Gamma$ acts as a Borel function from X to X.

Prove that α admits a Borel transversal if and only if it admits a Borel selector.

HINT: For \leftarrow , note that a selector is an idempotent (i.e. $s^2 = s$), so $s(X) = \{x \in X : s(x) = x\}$ and note that the diagonal $\{(x, x) : x \in X\}$ is in $\mathcal{B}(X) \otimes \mathcal{B}(X)$ by Question 4(a).

- **6.** Follow the steps below to build an example of a Borel function $f : [0,1] \rightarrow [0,1]$ (in fact, a homeomorphism²) and a Lebesgue measurable function $g : [0,1] \rightarrow [0,1]$ such that the composition $g \circ f$ is **not** Lebesgue measurable.
 - (i) Prove that every Lebesgue measurable set *A* of positive measure contains a non-measurable subset.

HINT: Any transversal of $E_V|_A$ is non-measurable, and the proof is the same as for A := [0, 1] done in class after restricting A to a set of finite positive measure.

- (ii) Let C_0 and C_+ be Cantor sets contained in (0,1) where C_0 is Lebesgue null, while C_+ has positive Lebesgue measure. For convenience, construct C_0 and C_+ by removing middle open intervals at every step. Then there is a homeomorphism $f:[0,1] \rightarrow [0,1]$ such that $f(C_+) = C_0$ and $f([0,1] \setminus C_+) \subseteq [0,1] \setminus C_0^c$.
- (iii) Let $Y \subseteq C_+$ be a non-measurable set and put $g := \mathbb{1}_{f(Y)}$. Observe that g is Lebesgue measurable, however $g \circ f$ is not.

¹We suppress the σ -algebra from the notation if it is not important.

²A **homeomorphism** is a continuous bijection so that its inverse is also continuous.