Measure theory with
ergodic horizons

Homework 5

Due: Mar 25

Definition. Let *X* be a set. We say that a subset $F \subseteq X$ **separates** $x, y \in X$ if it contains exactly one of *x*, *y*. We also say that a family \mathcal{F} of subsets of *X* **separates points** (in *X*) if any two distinct points $x, y \in X$ are separated by some $F \in \mathcal{F}$.

- **1.** Let *X* be a set and \mathcal{F} be a family of subsets of *X*. Let $E_{\mathcal{F}}$ be the binary relation on *X* of not being separated by any set in \mathcal{F} , i.e. $xE_{\mathcal{F}}y$ if and only if $x \in F \Leftrightarrow y \in F$ for every $F \in \mathcal{F}$.
 - (a) Observe that $E_{\mathcal{F}}$ is an equivalence relation, and that \mathcal{F} separates points in X exactly when $E_{\mathcal{F}}$ is the equality relation on X (i.e. every $E_{\mathcal{F}}$ -class is a singleton).
 - (b) Prove that every set $B \in \langle \mathcal{F} \rangle_{\sigma}$ is $E_{\mathcal{F}}$ -invariant, i.e. is a union of $E_{\mathcal{F}}$ -classes.

HINT: Consider the collection of sets in $\langle \mathcal{F} \rangle_{\sigma}$ that are $E_{\mathcal{F}}$ -invariant and show that it is a σ -algebra.

- (c) Conclude that if B is a σ-algebra on X containing all singletons (i.e. {x} ∈ B for each x ∈ X) then every generating family F ⊆ B for B (i.e. ⟨F⟩_σ = B) separates points in X.
- 2. Let (X, \mathcal{B}, μ) be a σ -finite measure space.
 - (a) Prove that if \mathcal{B} contains a countable family \mathcal{F} separating points in X, then every μ -atom A is $=_{\mu}$ to a singleton, i.e. $A = \{x\} \cup Z$ where $\{x\}$ has positive measure and Z is null. In particular, every Borel measure on a second countable (equivalently, separable) metric space has this property.

HINT: Note that it is enough to prove this for a finite measure μ . Let $(F_n)_{n \in \mathbb{N}}$ be an enumeration of \mathcal{F} and build a so-called **Cantor scheme** on X by setting $F_s := \bigcap_{i < |s|} F_i^{s(n)}$ for each $s \in 2^{<\mathbb{N}}$, where we use notation $B^0 := X \setminus B$ and $B^1 := B$ for a set $B \subseteq X$. Now if A is an atom, note that for each $n \in \mathbb{N}$ there is exactly one $s \in 2^n$ with $\mu(F_s \cap A) = \mu(A)$. Follow this down in the tree $2^{<\mathbb{N}}$ to find an infinite branch, which defines a singleton of measure $\mu(A)$. (Just like in the proofs that $2^{\mathbb{N}}$ and [0, 1] are sequentially compact.)

- (b) Conclude that if \mathcal{B} contains all singletons and is countably generated (i.e. admits a countable generating subcollection), then every μ -atom is $=_{\mu}$ to a singleton.
- **3.** Finish the proof of the statement that locally finite Borel measures on Polish spaces are tight. You may use without proof that every open subset of a Polish metric space is still Polish but perhaps with respect to a different equivalent metric.