Measure theory with ergodic horizons HOMEWORK 13 Due: Jun 10

- **1.** Conditional expectation. Let (X, \mathcal{B}, μ) be a σ -finite measure space and $\mathcal{C} \subseteq \mathcal{B}$ be a sub- σ -algebra witnessing the σ -finiteness of μ , i.e. $X = \bigcup_{n \in \mathbb{N}} C_n$ where each $C_n \in \mathcal{C}$ and $\mu(C_n) < \infty$. Thus, the restriction $\nu := \mu|_{\mathcal{C}}$ is a σ -finite measure on the measurable space (X, \mathcal{C}) .
 - (a) Show that $\int_X g d\mu = \int_X g d\nu$ for each C-measurable function $g: X \to \overline{\mathbb{R}}$ which is non-negative or μ -integrable. In particular, C-measurable μ -integrable functions are ν -integrable.
 - (b) Prove that for each B-measurable f ∈ L¹(μ), there is a C-measurable f̃ ∈ L¹(μ) such that ∫_C f dμ = ∫_C f̃ dμ for each C ∈ C. This function f̃ is unique up to a μ-null set (prove this as well) and it is called the **conditional expectation** of f with respect to the sub-σ-algebra C. In particular, if f is already C-measurable, then f̃ = f a.e. HINT: First suppose that f ≥ 0, and consider the measure v_f := μ_f|_C on C, where μ_f(B) := ∫_B f dμ. Observe that v_f ≪ ν so dv_f/dν exists.
 - (c) Deduce that $\int fg d\mu = \int \tilde{f}g d\mu$ for each f as above and C-measurable function $g: X \to \overline{\mathbb{R}}$ such that fg is μ -integrable.
 - (d) To get a handle on conditional expectation, let C be the σ -algebra generated by a countable partition $\mathcal{P} \subseteq \mathcal{B}$ of X and compute \tilde{f} explicitly in terms of f and \mathcal{P} .

HINT: In this case, \tilde{f} is a countable linear combination of indicator functions.

- **2.** Measure disintegration. Let (X, \mathcal{B}) and (Y, \mathcal{C}) be measurable spaces, μ be a probability measure on (X, \mathcal{B}) , and $\pi : X \to Y$ be a $(\mathcal{B}, \mathcal{C})$ -measurable function. Let $P(X, \mathcal{B})$ denote the set of all probability measures on X.
 - (a) Prove that $\pi_*\mu$ admits **measure disintegration**, i.e. a map $y \mapsto \mu_y : Y \to P(X, \mathcal{B})$ such that
 - (i) for each $B \in \mathcal{B}$, the function $y \mapsto \mu_v(B)$ is \mathcal{C} -measurable and $\mu(B) = \int_V \mu_v(B) d(\pi_*\mu)$,
 - (ii) $\mu_v(C) = \mathbb{1}_C(y)$ for $\pi_*\mu$ -a.e. $y \in Y$.

HINT: Take the conditional expectation $\widetilde{\mathbb{1}_B}$ of $\mathbb{1}_B$ with respect to the sub- σ -algebra $\pi^{-1}(\mathcal{C})$ of \mathcal{B} . Set $\mu_v(B) := \widetilde{\mathbb{1}_B}(x)$ for any/some $x \in \pi^{-1}(y)$.

- (b) Show that measure disintegration is unique up to $\pi_*\mu$ -null sets.
- (c) Deduce that if C admits a countable family that separates points (e.g. when C is standard Borel), then in fact:

(ii') $\mu_{v}(\pi^{-1}(y)) = 1$ for $\pi_{*}\mu$ -a.e. $y \in Y$.

- **3.** Consider the space \mathbb{R}^d with Lebesgue measure λ and let r > 0. Let A_r be the averaging operator on L^1 defined by $A_r f(x) := \frac{1}{\lambda(B_r(x))} \int_{B_r(x)} f \, d\lambda$, where $B_r(x)$ is the (open) ball of radius r centered at x in the d_{∞} metric.
 - (a) Prove the local-global bridge lemma: $\int f d\lambda = \int A_r f d\lambda$ for all $f \in L^1$. In particular, A_r is an L^1 -contraction, i.e. $||A_r f||_1 \leq ||f||_1$ for all $f \in L^1$, and hence $A_r : L^1 \to L^1$.
 - (b) Prove that for each $f \in L^1$, the function $(r, x) \mapsto A_r f(x)$ is continuous as a function $(0, \infty) \times \mathbb{R}^d \to \mathbb{R}$, i.e. it is jointly continuous in (r, x).