Measure theory with	
ergodic horizons	

Homework 11

Due: May 13

1. Let (X, μ) be a measure space. Recall that an equivalence relation E on X is called **ergodic** if every E-invariant measurable set is null or conull. Prove that every E-invariant¹ measurable function $f : X \to \mathbb{R}$ is constant a.e. i.e. there is a constant $c \in \mathbb{R}$ such that f = c a.e.

HINT: There are two ways to prove it.

- (1) Devide \mathbb{R} into countably many intervals and notice that exactly one of them has a conull preimage. Next define each interval by into two equal pieces, and again, exactly one of them has conull preimage. Continue...
- (2) If f isn't constant a.e. then the pushforward $f_*\mu$ isn't a Dirac measure, so there is a set $A \subseteq \mathbb{R}$ such that both A and $\mathbb{R} \setminus A$...

2. Tightness of the Fubini–Tonelli hypothesis.

(a) **Non**- σ -finite. Let X := [0,1], and let μ and ν be, respectively, Lebesgue and counting measures on X. Because ν is not σ -finite, the product measure $\mu \times \nu$ is not unique, but we let $\mu \times \nu$ denote the largest of them, namely, the outer measure $(\mu \times \nu)^*$ induced by the premeasure $\mu \times \nu$ on the algebra generated by $\mathcal{B}(X) \times \mathcal{B}(X)$.

For the diagonal $\Delta := \{(x, x) : x \in X\}$, compute

$$\int \nu(\Delta_x) d\mu(x), \ \int \mu(\Delta^y) d\nu(y), \text{ and } \mu \times \nu(\Delta)$$

to verify that no two are equal to each other.

HINT: To compute $\mu \times \nu(\Delta)$, recall the definition of the outer measure.

- (b) **Non-integrable.** Let $\mu = \nu$ be the counting measure on \mathbb{N} (defined on $\mathscr{P}(\mathbb{N})$). Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ be defined by setting f(x, y) to be 1 if x = y, -1 if x = y + 1, and 0 otherwise. Verify that f is not $\mu \times \nu$ -integrable, and although the integrals $\int \int f d\mu d\nu$ and $\int \int f d\nu d\mu$ both exist, they are unequal.
- (c) [*Optional*] **Non-measurable.** Let $X := \omega_1$ and let $\mathcal{M} = \mathcal{N}$ be the σ -algebra of countable and co-countable subsets of ω_1 . Let $\mu = \nu$ be defined to be 0 on countable and 1 on co-countable sets. Let $R := \langle i.e. R := \{(x, y) \in \omega_1 \times \omega_1 : x < y\}$. Then R is not in $\mathcal{M} \times \mathcal{N}$. However, the fibers R_x and R^y are in $\mathcal{M} = \mathcal{N}$ for each $x, y \in \omega_1$, and the integrals $\int \nu(R_x) d\mu(x)$ and $\int \mu(R^y) d\nu(y)$ exist, but they are unequal.
- **3.** $\mu \times \nu$ -measurable Fubini–Tonelli. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces and let $f : X \times Y \to \mathbb{R}$ be a $\mu \times \nu$ -measurable function. Prove:

¹A function *f* on *X* is called *E*-invariant if it is constant on every \mathbb{E} -class, i.e. $xEy \implies f(x) = f(y)$ for all $x, y \in X$.

(a) The fibers f_x and f^y are respectively ν and μ measurable for μ -a.e. $x \in X$ and ν -a.e. $y \in Y$.

CAUTION: Folland claims $\mathcal M$ and $\mathcal N$ measurability instead, which is wrong.

(b) If $f \ge 0$, then functions $g: x \mapsto \int f_x dv$ and $h: y \mapsto \int f^y d\mu$ are defined respectively μ -a.e. and ν -a.e., and they are respectively μ and ν measurable. Moreover,

(*)
$$\int \int f \, d\nu \, d\mu = \int f \, d\mu \times \nu = \int \int f \, d\mu \, d\nu$$

- (c) If *f* is $\mu \times \nu$ -integrable, then in fact *g* and *h* are μ and ν integrable and (*) holds.
- 4. Namioka's trick. Let $f : (0, \infty) \to \mathbb{R}$ be a Lebesgue integrable function. Prove:
 - (a) $g(x) := \int_{x}^{\infty} t^{-1} f(t) d\lambda(t)$ is well-defined for each x > 0, i.e. $t \mapsto \mathbb{1}_{(x,\infty)}(t) t^{-1} f(t)$ is a Lebesgue integrable function.
 - (b) The function $g:(0,\infty) \to \mathbb{R}$ is Lebesgue integrable and

$$\int_0^\infty g\,d\lambda = \int_0^\infty f\,d\lambda.$$