Due: Oct 7, 11:59pm

Math 564: Real analysis & measure theory

Homework 3

Definition. Let X be a set. We say that a subset $F \subseteq X$ **separates** $x, y \in X$ if it contains exactly one of x, y. We also say that a family \mathcal{F} of subsets of X **separates points** (in X) if any two distinct points $x, y \in X$ are separated by some $F \in \mathcal{F}$.

- **1.** Let *X* be a set and \mathcal{F} be a family of subsets of *X*. Let $E_{\mathcal{F}}$ be the binary relation on *X* of not being separated by any set in \mathcal{F} , i.e. $xE_{\mathcal{F}}y$ if and only if $x \in F \Leftrightarrow y \in F$ for every $F \in \mathcal{F}$.
 - (a) Observe that $E_{\mathcal{F}}$ is an equivalence relation, and that \mathcal{F} separates points in X exactly when $E_{\mathcal{F}}$ is the equality relation on X (i.e. every $E_{\mathcal{F}}$ -class is a singleton).
 - (b) Prove that every set $B \in \langle \mathcal{F} \rangle_{\sigma}$ is $E_{\mathcal{F}}$ -invariant, i.e. is a union of $E_{\mathcal{F}}$ -classes. Hint: Consider the collection of sets in $\langle \mathcal{F} \rangle_{\sigma}$ that are $E_{\mathcal{F}}$ -invariant and show that it is a σ -algebra.
 - (c) Conclude that if \mathcal{B} is a σ -algebra on X containing all singletons (i.e. $\{x\} \in \mathcal{B}$ for each $x \in X$) then every generating family \mathcal{F} for \mathcal{B} (i.e. $\langle \mathcal{F} \rangle_{\sigma} = \mathcal{B}$) separates points in X.
- **2.** Let (X, \mathcal{B}, μ) be a σ -finite measure space.
 - (a) Prove that if \mathcal{B} contains a countable family \mathcal{F} separating points in X, then every μ -atom A is $=_{\mu}$ to a singleton, i.e. $A = \{x\} \cup Z$ where $\{x\}$ has positive measure and Z is null.
 - Hint: Firstly, note that σ -finiteness implies $\mu(A) < \infty$. Next, define a decreasing sequence (A_n) of subsets of A as follows: put $A_0 := A$ and supposing that A_n is defined, let A_{n+1} be the unique non-null set among $F_n \cap A_n$ or $F_n^c \cap A_n$. Finally, show that $\bigcap_{n \in \mathbb{N}} A_n$ is a singleton.
 - (b) Conclude that if \mathcal{B} contains all singletons and is countably generated (i.e. admits a countable generating subcollection), then every μ -atom is $=_{\mu}$ to a singleton.
- **3.** Let (X, \mathcal{B}, μ) be a σ -finite measure space.
 - (a) Prove that there are at most countably many disjoint atoms in \mathcal{B} .
 - (b) From this and Question 2(b) deduce that every purely atomic σ -finite Borel measure on a second countable metric space X is a positive linear combination of Dirac measures, i.e.

$$\mu = \sum_{n \in \mathbb{N}} a_n \delta_{x_n},$$

for some $a_n \ge 0$ and $x_n \in X$.

(c) Conclude the following decomposition theorem:

Theorem. Every σ -finite Borel measure μ on a second countable metric space X decomposes into purely atomic and atomless parts, i.e. $\mu = \mu_0 + \mu_1$, where μ_0 is an atomless Borel measure on X and μ_1 is a purely atomic Borel measure on X. Equivalently, $X = X_0 \sqcup X_1$ where X_1 is countable, $\mu|_{X_1}$ is purely atomic, and $\mu|_{X_0}$ is atomless.

4. Follow the steps below to prove the **Steinhaus theorem**: For every Lebesgue measurable non-null set $A \subseteq \mathbb{R}^d$, the difference set $A - A := \{a_0 - a_1 : a_0, a_1 \in A\}$ contains an open neighbourhood of $\vec{0}$.

Tip: For simplicity of thought and pictures, only think of d = 1. Draw pictures.

- (i) Check that for all sets $U, V \subseteq \mathbb{R}^d$, we have $U \subseteq V V$ if and only if $(V + u) \cap V \neq \emptyset$ for all $u \in U$.
- (ii) Let B be a nonempty bounded open box whose at least $(1 1/2^{d+2}) \cdot 100\%$ is A. Let b_0 be the midpoint of B and put $U := B b_0$, so U is an open box centered at $\vec{0}$. Show that for each $u \in U$, the intersection $B_u := B + u \cap B$ is a box whose each dimension is at least half of that of B, so B_u occupies at least $(1/2^d) \cdot 100\%$ of B and of B + u.
- (iii) Conclude that at least 75% of B_u is A while at least 75% of B_u is A+u, so $A+u\cap A\neq\emptyset$ for each $u\in U$, hence $U\subseteq A-A$.

Remark: The exact same theorem holds for the Bernoulli(1/2) measure on $2^{\mathbb{N}}$ identified with the group $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$. As usual, the proof is easier than for the Lebesgue measure.

5. Recall the equivalence relation \mathbb{E}_0 of eventual equality on $2^{\mathbb{N}}$ from Question 8 of HW2. Use the 99% lemma to prove that \mathbb{E}_0 is $\mu_{\frac{1}{2}}$ -ergodic, where $\mu_{\frac{1}{2}}$ is the Bernoulli($\frac{1}{2}$) measure.

HINT: $\sigma_n(A) = A$ for each \mathbb{E}_0 -invariant set A and $n \in \mathbb{N}$, where σ_n is the n^{th} bit-flip transformation.

Remark: \mathbb{E}_0 is actually μ_p -ergodic for all $p \in (0,1)$ by a more careful version of the same proof.

6. Let Γ be a countable group and (X, \mathcal{B}, μ) be nonzero atomless measure space. Let $\Gamma \curvearrowright X$ be an action of Γ on X mapping sets in \mathcal{B} to sets in \mathcal{B} , i.e. $\gamma \cdot B \in \mathcal{B}$ for each $\gamma \in \Gamma$ and $B \in \mathcal{B}$. Suppose that this action is **null-preserving**, i.e. $\gamma \cdot B$ is null if and only if B is null for each $\gamma \in \Gamma$ and $B \in \mathcal{B}$. Prove that if this action is *ergodic*, then the orbit equivalence relation E_{Γ} does not admit any μ -measurable transversal.

Hint: For any subset $B \subseteq X$, the set $[B]_{E_{\Gamma}} := \bigcup_{\gamma \in \Gamma} \gamma \cdot B$ is the smallest E_{Γ} -invariant set containing B, and is called the E_{Γ} -saturation of B. Now suppose that $S \subseteq X$ is a μ -measurable transversal for E_{Γ} and use that S is not an atom. To get an E_{Γ} -invariant set take the E_{Γ} -saturation.

7. Let (X, d) be a metric space and μ be a regular Borel measure on X.

(a) Prove for every compact subset $K \subseteq X$,

$$\lim_{\delta \searrow 0} \mu(B_{\delta}(K)) = \mu(K).$$

where $\mu(B_{\delta}(K))$ denotes the δ -ball around K, i.e.

$$B_{\delta}(K) := \{x \in X : d(x,k) < \delta\} = \bigcup_{x \in K} B_{\delta}(x).$$

- (b) Construct an example of a non-compact null (in fact, countable) subset of \mathbb{R} for which the conclusion of part (a) fails for Lebesgue measure.
- **8.** (a) Let (X, μ) be a measure space and Y, Z be topological/metric spaces. Show that if $f: X \to Y$ is μ -measurable and $g: Y \to Z$ is Borel then $g \circ f: X \to Z$ is μ -measurable.
 - (b) The roles of f and g above cannot be switched! Follow the steps below to build an example of a Borel function $f:[0,1] \to [0,1]$ (in fact, a homeomorphism) and a Lebesgue measurable function $g:[0,1] \to [0,1]$ such that the composition $g \circ f$ is **not** Lebesgue measurable.
 - (i) [*Optional*] Prove that every Lebesgue measurable set *A* of positive measure contains a non-measurable subset.
 - Hint: Any transversal of $E_{\mathbb{Q}}|_A$ is non-measurable, and the proof is the same as for A := [0,1] done in class after restricting A to a set of finite positive measure.
 - (ii) [Optional] Let C_0 and C_+ be Cantor sets contained in (0,1) where C_0 is Lebesgue null, while C_+ has positive Lebesgue measure. For convenience, construct C_0 and C_+ by removing middle open intervals at every step. Then there is a homeomorphism $f:[0,1] \to [0,1]$ such that $f(C_+) = C_0$ and $f([0,1] \setminus C_+^c) \subseteq [0,1] \setminus C_0^c$.
 - (iii) Let $Y \subseteq C_+$ be a non-Lebesgue-measurable set and put $g := \mathbb{1}_{f(Y)}$. Show that g is Lebesgue measurable, however $g \circ f$ is not.
- **9.** Let (X, \mathcal{A}) and (Y_i, \mathcal{B}_i) , i = 1, 2, be measurable spaces. Denote by $\mathcal{B}_1 \otimes \mathcal{B}_2$ the σ -algebra on $Y_1 \times Y_2$ generated by the sets of the form $B_1 \times B_2$, where $B_i \in \mathcal{B}_i$.
 - (a) Prove that if the Y_i are second countable topological/metric spaces, then

$$\mathcal{B}(Y_1 \times Y_2) = \mathcal{B}(Y_1) \otimes \mathcal{B}(Y_2).$$

(Here $Y_1 \times Y_2$ is equipped with the product topology.¹) In particular, $\mathcal{B}(\mathbb{R}^d) = \bigotimes_{i=1}^d \mathcal{B}(\mathbb{R})$.

(b) Prove that for (A, B_i) -measurable functions $f_i : X \to Y_i$, the function $(f_1, f_2) : X \to Y_1 \times Y_2$ defined by $x \mapsto (f_1(x), f_2(x))$ is $(A, B_1 \otimes B_2)$ -measurable.

¹The topology whose open sets are *arbitrary* unions of sets of the form $U_1 \times U_2$, where $U_i \subseteq Y_i$ is open. If the Y_i are metric spaces with the metrics d_i , then the product topology on $Y_1 \times Y_2$ is given by the metric $max(d_1, d_2)$, for example.

(c) Conclude that if $f_1, f_2 : X \to \mathbb{R}$ are \mathcal{A} -measurable and $g : \mathbb{R}^2 \to \mathbb{R}$ is Borel, then $g(f_1, f_2) : X \to \mathbb{R}$ is μ -measurable. In particular, $f_1 + f_2$ and $f_1 \cdot f_2$ are μ -measurable.