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Math 564: Real analy-
sis & measure theory Homework 3 Due: Oct 7, 11:59pm

Definition. Let X be a set. We say that a subset F ⊆ X separates x,y ∈ X if it contains
exactly one of x,y. We also say that a family F of subsets of X separates points (in X) if
any two distinct points x,y ∈ X are separated by some F ∈ F .

1. Let X be a set and F be a family of subsets of X. Let EF be the binary relation on X
of not being separated by any set in F , i.e. xEFy if and only if x ∈ F⇔ y ∈ F for every
F ∈ F .

(a) Observe that EF is an equivalence relation, and that F separates points in X exactly
when EF is the equality relation on X (i.e. every EF -class is a singleton).

(b) Prove that every set B ∈ ⟨F⟩σ is EF -invariant, i.e. is a union of EF -classes.

Hint: Consider the collection of sets in ⟨F⟩σ that are EF -invariant and show that
it is a σ -algebra.

(c) Conclude that if B is a σ -algebra on X containing all singletons (i.e. {x} ∈ B for
each x ∈ X) then every generating family F for B (i.e. ⟨F⟩σ = B) separates points
in X.

2. Let (X,B,µ) be a σ -finite measure space.

(a) Prove that if B contains a countable family F separating points in X, then every
µ-atom A is =µ to a singleton, i.e. A = {x} ∪Z where {x} has positive measure and Z
is null.

Hint: Firstly, note that σ -finiteness implies µ(A) <∞. Next, define a decreasing
sequence (An) of subsets of A as follows: put A0

..= A and supposing that An is
defined, let An+1 be the unique non-null set among Fn ∩An or Fc

n ∩An. Finally,
show that

⋂
n∈NAn is a singleton.

(b) Conclude that if B contains all singletons and is countably generated (i.e. admits a
countable generating subcollection), then every µ-atom is =µ to a singleton.

3. Let (X,B,µ) be a σ -finite measure space.

(a) Prove that there are at most countably many disjoint atoms in B.

(b) From this and Question 2(b) deduce that every purely atomic σ -finite Borel mea-
sure on a second countable metric space X is a positive linear combination of Dirac
measures, i.e.

µ =
∑
n∈N

anδxn ,

for some an ⩾ 0 and xn ∈ X.

(c) Conclude the following decomposition theorem:
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Theorem. Every σ -finite Borel measure µ on a second countable metric space X decom-
poses into purely atomic and atomless parts, i.e. µ = µ0 +µ1, where µ0 is an atomless
Borel measure on X and µ1 is a purely atomic Borel measure on X. Equivalently,
X = X0 ⊔X1 where X1 is countable, µ|X1

is purely atomic, and µ|X0
is atomless.

4. Follow the steps below to prove the Steinhaus theorem: For every Lebesgue measurable
non-null set A ⊆ R

d , the difference set A −A ..= {a0 − a1 : a0, a1 ∈ A} contains an open
neighbourhood of 0⃗.

Tip: For simplicity of thought and pictures, only think of d = 1. Draw pictures.

(i) Check that for all sets U,V ⊆R
d , we have U ⊆ V −V if and only if (V +u)∩V , ∅

for all u ∈U .

(ii) Let B be a nonempty bounded open box whose at least (1 − 1/2d+2) · 100% is A.
Let b0 be the midpoint of B and put U ..= B− b0, so U is an open box centered at
0⃗. Show that for each u ∈ U , the intersection Bu

..= B+ u ∩B is a box whose each
dimension is at least half of that of B, so Bu occupies at least (1/2d) ·100% of B and
of B+u.

(iii) Conclude that at least 75% of Bu is A while at least 75% of Bu is A+u, so A+u∩A , ∅
for each u ∈U , hence U ⊆ A−A.

Remark: The exact same theorem holds for the Bernoulli(1/2) measure on 2N identified
with the group (Z/2Z)N. As usual, the proof is easier than for the Lebesgue measure.

5. Recall the equivalence relation E0 of eventual equality on 2N from Question 8 of
HW2. Use the 99% lemma to prove that E0 is µ 1

2
-ergodic, where µ 1

2
is the Bernoulli(1

2 )
measure.

Hint: σn(A) = A for each E0-invariant set A and n ∈ N, where σn is the nth bit-flip
transformation.

Remark: E0 is actually µp-ergodic for all p ∈ (0,1) by a more careful version of the
same proof.

6. Let Γ be a countable group and (X,B,µ) be nonzero atomless measure space. Let Γ ↷ X
be an action of Γ on X mapping sets in B to sets in B, i.e. γ ·B ∈ B for each γ ∈ Γ and
B ∈ B. Suppose that this action is null-preserving, i.e. γ ·B is null if and only if B is null
for each γ ∈ Γ and B ∈ B. Prove that if this action is ergodic, then the orbit equivalence
relation EΓ does not admit any µ-measurable transversal.

Hint: For any subset B ⊆ X, the set [B]EΓ
..=

⋃
γ∈Γ γ · B is the smallest EΓ -invariant

set containing B, and is called the EΓ -saturation of B. Now suppose that S ⊆ X is a
µ-measurable transversal for EΓ and use that S is not an atom. To get an EΓ -invariant
set take the EΓ -saturation.

7. Let (X,d) be a metric space and µ be a regular Borel measure on X.
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(a) Prove for every compact subset K ⊆ X,

lim
δ↘0

µ(Bδ(K)) = µ(K).

where µ(Bδ(K)) denotes the δ-ball around K , i.e.

Bδ(K) ..= {x ∈ X : d(x,k) < δ} =
⋃
x∈K

Bδ(x).

(b) Construct an example of a non-compact null (in fact, countable) subset of R for
which the conclusion of part (a) fails for Lebesgue measure.

8. (a) Let (X,µ) be a measure space and Y ,Z be topological/metric spaces. Show that
if f : X → Y is µ-measurable and g : Y → Z is Borel then g ◦ f : X → Z is µ-
measurable.

(b) The roles of f and g above cannot be switched! Follow the steps below to build an
example of a Borel function f : [0,1]→ [0,1] (in fact, a homeomorphism) and a
Lebesgue measurable function g : [0,1]→ [0,1] such that the composition g ◦ f is
not Lebesgue measurable.

(i) [Optional] Prove that every Lebesgue measurable set A of positive measure
contains a non-measurable subset.

Hint: Any transversal of E
Q
|A is non-measurable, and the proof is the same as

for A ..= [0,1] done in class after restricting A to a set of finite positive measure.

(ii) [Optional] Let C0 and C+ be Cantor sets contained in (0,1) where C0 is Lebesgue
null, while C+ has positive Lebesgue measure. For convenience, construct
C0 and C+ by removing middle open intervals at every step. Then there is a
homeomorphism f : [0,1]→ [0,1] such that f (C+) = C0 and f ([0,1] ∖Cc

+) ⊆
[0,1]∖Cc

0.

(iii) Let Y ⊆ C+ be a non-Lebesgue-measurable set and put g ..= 1f (Y ). Show that g
is Lebesgue measurable, however g ◦ f is not.

9. Let (X,A) and (Yi ,Bi), i = 1,2, be measurable spaces. Denote by B1 ⊗B2 the σ -algebra
on Y1 ×Y2 generated by the sets of the form B1 ×B2, where Bi ∈ Bi .

(a) Prove that if the Yi are second countable topological/metric spaces, then

B(Y1 ×Y2) = B(Y1)⊗B(Y2).

(Here Y1 × Y2 is equipped with the product topology.1) In particular, B(Rd) =⊗d
i=1B(R).

(b) Prove that for (A,Bi)-measurable functions fi : X→ Yi , the function (f1, f2) : X→
Y1 ×Y2 defined by x 7→ (f1(x), f2(x)) is (A,B1 ⊗B2)-measurable.

1The topology whose open sets are arbitrary unions of sets of the form U1 ×U2, where Ui ⊆ Yi is open.
If the Yi are metric spaces with the metrics di , then the product topology on Y1 ×Y2 is given by the metric
max(d1,d2), for example.
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(c) Conclude that if f1, f2 : X → R are A-measurable and g : R2 → R is Borel, then
g(f1, f2) : X→R is µ-measurable. In particular, f1 + f2 and f1 · f2 are µ-measurable.
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