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Math 564: Real analy-
sis & measure theory Homework 2 Due: Sep 23, 11:59pm

1. Let A denote the algebra generated by boxes in R
d .

(a) Prove that A is exactly the collection of finite disjoint unions of boxes.

(b) Finish the proof of Claim (b) for boxes in R
d , namely: For any finite partitions P1

and P2 of a set A ∈A into boxes, we have∑
P1∈P1

λ̃(P1) =
∑
P2∈P2

λ̃(P2).

(c) Deduce that λ is finitely additive on A.

2. Let A denote the algebra generated by boxes in R
d . Using the statement that λ is

countably additive on bounded boxes, i.e. λ(B) =
∑

n∈Nλ(Bn) for a bounded box B ⊆R
d

and a partition {Bn}n∈N of B into boxes, finish the proof of countable additivity of λ on
A. More precisely:

(i) Prove that λ(B) =
∑

n∈Nλ(Bn) for an unbounded box B ⊆R
d and a partition {Bn}n∈N

of B into boxes.

Caution: An unbounded box has measure∞ or 0.

(ii) Finally conclude that λ(A) =
∑

n∈Nλ(An) for a set A ∈A and a partition {An}n∈N of
A into sets in A.

3. Carathéodory’s proof of the existence part of Carathéodory’s extension theorem. Let µ be
a premeasure on an algebra A and let µ∗ be its outer measure. For sets A,B ⊆ X, say
that a set A conserves B if µ∗(B) = µ∗(A∩ B) + µ∗(Ac ∩ B). Let M be the collection of
conservative sets, i.e. sets A which conserve every set B ⊆ X. Prove:

(a) M ⊇A.

(b) M is an algebra.

(c) M is closed under countable disjoint unions. Deduce that M is a σ -algebra.

Hint: First show that µ∗(S) ⩾ µ∗(S ∩
⊔

n<N Mn) + µ∗(S ∩Mc), then write µ∗(S ∩⊔
n<N Mn) as a finite sum using part (b) and let N →∞.

(d) µ∗ is finitely additive on M, and hence countably additive.

4. Let µ be a finite premeasure on an algebra A on a set X and denote B ..= ⟨A⟩σ . Recall
the pseudo-metric dµ∗ on P(X) defined by dµ∗(A,B) ..= µ∗(A △ B). Let MC and MT be
the σ -algebras containing A given by Carathéodory’s and Tao’s proofs, respectively, i.e.

•MC is the collection of all sets M ⊆ X such that µ∗(S) = µ∗(M ∩S) +µ∗(Mc ∩S) for all
S ⊆ X;
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•MT is the closure of A with respect to dµ∗ .

Prove that MC =
{
M ⊆ X : dµ∗(M,B) = 0 for some B ∈ ⟨A⟩σ

}
= MT .

Hint: Recall the definition of µ∗(M) to define B as a countable intersection of countable
unions of sets in A. You can use that µ∗ is countably additive on MC and MT .

5. A translation-invariant Borel measure on R
d is a measure µ defined on the Borel

σ -algebra B(Rd) such that µ(x⃗ + B) = µ(B) for each point x⃗ ∈ Rd and each Borel set
B ⊆R

d .

(a) Show that the Lebesgue measure (the unique extension to the Borel sigma algebra
of the Lebesgue premeasure on boxes) is translation-invariant.

(b) Prove that Rd does not admit a translation-invariant Borel probability measure
µ. In fact, show that for any nonzero vector x⃗ ∈ Rd , there does not exist a Borel
probability measure that is invariant under translation by x⃗.

Hint: Find a Borel transversal for the coset equivalence relation of the subgroup
Zt⃗ ⩽ R

d , i.e. a Borel set W ⊆ R
d such that Rd =

⊔
n∈Z(nx⃗ +W ). Do this for d = 1

first to easily find a set W .

6. In a metric space X, a set C ⊆ X is called a Cantor set if it is homeomorphic to the
Cantor space 2N, i.e. there is a continuous bijection f : 2N→ C whose inverse is also
continuous1. In particular, C is a compact subset of X of cardinality continuum. See
my short note on Cantor sets [pdf] to learn more about them.

(a) [Optional] In a connected2 metric space X (such as R
d), prove every Cantor set

has is compact (hence closed) and has empty interior; in particular, it is nowhere
dense.

Hint: If a Cantor set C has nonempty interior U , then there is a further set V ⊆U
such that V is clopen relative to C, i.e. there is an open set O ⊆ X and a closed set
K ⊆ X such that O∩C = V = K ∩C. Show that V is clopen in X.

(b) The standard Cantor set in [0,1] is the set C ..=
⋂

n∈N
⋃

s∈2nCs, where each Cs is a
closed interval defined inductively by setting C∅ ..= [0,1] and letting Cs0 and Cs1
be the bottom third and top third closed subintervals of the closed interval Cs for
each s ∈ 2<N. In particular, C0

..= [0, 1
3 ] and C1

..= [2
3 ,1], C00

..= [0, 1
32 ], C01

..= [ 2
32 ,

3
32 ],

C10
..= [ 6

32 ,
7
32 ], and C11

..= [ 8
32 ,1], etc. Prove that C is indeed a Cantor set (i.e. is

homeomorphic to 2N) and that C is Lebesgue-null.

1The requirement that f −1 is continuous is redundant, it is automatically continuous because 2N is
compact and X is Hausdorff.

2A metric space is connected if it has no clopen sets, other than the whole space and ∅.
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Hint: To show that the obvious bijection between 2N and C is a homeomorphism
note that the Cs are relatively open in C, hence form a basis for C. For nullness, let
Us be the middle third open interval in Cs, i.e. Us

..= Cs \ (Cs0 ∪Cs1), and calculate∑
s∈2<N lh(Us).

Remark: Thus, C is an example of a null set of cardinality continuum.

(c) Define a Cantor subset of [0,1] of positive Lebesgue measure.

Hint: Note that in the standard Cantor set, the open interval Us
..= Cs \ (Cs0 ⊔Cs1)

that we remove from Cs occupies 1/3 of Cs regardless of s. Change the construction
so that Us has length pn, where n ..= lh(s) and the sequence (pn) goes to 0 fast
enough to guarantee

∑
n∈N2npn < 1.

7. Let A be a finite nonempty set and let ν be a probability measure on P(A) such that
ν(a) > 0 for each a ∈ A; e.g. A ..= 3 ..= {0,1,2} and ν(0) ..= 1/2, ν(1) ..= 1/3, and ν(2) ..= 1/6.
Let µ be the Bernoulli measure νN defined in class, i.e. its value on a cylinder [w] is:

µ([w]) ..= ν(w0) · ν(w1) · · ·ν(wn−1),

where w ∈ A<N and n ..= lh(w).
Fix a0 ∈ A and prove that (A \ {a0})N is µ-null, i.e. µ((A \ {a})N) = 0.

Remark: If |A| ⩾ 3, then (A \ {a0})N is another example of a null set of cardinality
continuum.

8. [Optional] Let E0 be the equivalence relation on 2N of eventual equality, i.e.

xE0y ..⇔∀∞n x(n) = y(n),

where ∀∞n means for all large enough n. For each n, let σn : 2N→ 2N be the nth bit flip
map, i.e. σn(x) is the same as x except that its nth coordinate is equal to 1− x(n). Let Γ
be the group generated by all the σn. Then Γ naturally acts on 2N.

(a) Realize that the orbit equivalence relation of this action is exactly E0.

Remark: Actually, Γ is isomorphic to the direct sum ⊕n∈NZ/2Z so it is a subgroup
of the direct product

∏
n∈NZ/2Z � 2N, hence E0 is simply the coset equivalence

relation of ⊕n∈NZ/2Z as a subgroup of
∏

n∈NZ/2Z, just like E
Q

is the coset equiv-
alence relation of Q as a subgroup of R.

(b) Note that the Bernoulli(1/2) measure is invariant under this action, i.e. for any
µ1/2-measurable set A ⊆ 2N and γ ∈ Γ , we have µ1/2(γA) = µ1/2(A).
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(c) Prove that every transversal for E0 is not µ1/2-measurable.
Remark: In fact, one can also show that every transversal for E0 is not µp-
measurable for every p ∈ (0,1).

9. We say that a real r ∈ R admits a sequence of good rational approximations of
exponent α > 0 if there are infinitely many pairs (p,q) ∈Z×N+ such that

|r −
p

q
| < 1

qα
.

Dirichlet’s approximation theorem (or rather its immediate consequence) states that
every real admits a sequence of good rational approximations of exponent 2.

Prove however that for every ε > 0, almost no real admits a sequence of good rational
approximations of exponent 2 + ε, i.e. the set B of all r ∈ R that admit a sequence
of good rational approximations of exponent 2 + ε is null (with respect to Lebesgue
measure).

Hint: First note that it is enough to prove the statement for [0,1) instead of R. Next,
express B in terms of the sets

Ap,q
..=

{
r ∈R : |r −

p

q
| < 1

q2+ε

}
where p,q ∈N+ and p < q. Finally, what is the measure of Ap,q?
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