Last update: 10:38pm, Sept 25.

Due: Sep 23, 11:59pm

Math 564: Real analysis & measure theory

Homework 2

- 1. Let A denote the algebra generated by boxes in \mathbb{R}^d .
 - (a) Prove that A is exactly the collection of finite disjoint unions of boxes.
 - (b) Finish the proof of Claim (b) for boxes in \mathbb{R}^d , namely: For any finite partitions \mathcal{P}_1 and \mathcal{P}_2 of a set $A \in \mathcal{A}$ into boxes, we have

$$\sum_{P_1 \in \mathcal{P}_1} \tilde{\lambda}(P_1) = \sum_{P_2 \in \mathcal{P}_2} \tilde{\lambda}(P_2).$$

- (c) Deduce that λ is finitely additive on A.
- 2. Let \mathcal{A} denote the algebra generated by boxes in \mathbb{R}^d . Using the statement that λ is countably additive on *bounded* boxes, i.e. $\lambda(B) = \sum_{n \in \mathbb{N}} \lambda(B_n)$ for a bounded box $B \subseteq \mathbb{R}^d$ and a partition $\{B_n\}_{n \in \mathbb{N}}$ of B into boxes, finish the proof of countable additivity of λ on A. More precisely:
 - (i) Prove that $\lambda(B) = \sum_{n \in \mathbb{N}} \lambda(B_n)$ for an unbounded box $B \subseteq \mathbb{R}^d$ and a partition $\{B_n\}_{n \in \mathbb{N}}$ of B into boxes.

Caution: An unbounded box has measure ∞ or 0.

- (ii) Finally conclude that $\lambda(A) = \sum_{n \in \mathbb{N}} \lambda(A_n)$ for a set $A \in \mathcal{A}$ and a partition $\{A_n\}_{n \in \mathbb{N}}$ of A into sets in A.
- **3.** Carathéodory's proof of the existence part of Carathéodory's extension theorem. Let μ be a premeasure on an algebra \mathcal{A} and let μ^* be its outer measure. For sets $A, B \subseteq X$, say that a set A conserves B if $\mu^*(B) = \mu^*(A \cap B) + \mu^*(A^c \cap B)$. Let \mathcal{M} be the collection of conservative sets, i.e. sets A which conserve every set $B \subseteq X$. Prove:
 - (a) $\mathcal{M} \supseteq \mathcal{A}$.
 - (b) \mathcal{M} is an algebra.
 - (c) \mathcal{M} is closed under countable disjoint unions. Deduce that \mathcal{M} is a σ -algebra. Hint: First show that $\mu^*(S) \geqslant \mu^*(S \cap \bigsqcup_{n < N} M_n) + \mu^*(S \cap M^c)$, then write $\mu^*(S \cap \bigsqcup_{n < N} M_n)$ as a finite sum using part (b) and let $N \to \infty$.
 - (d) μ^* is finitely additive on \mathcal{M} , and hence countably additive.
- **4.** Let μ be a finite premeasure on an algebra \mathcal{A} on a set X and denote $\mathcal{B} := \langle A \rangle_{\sigma}$. Recall the pseudo-metric d_{μ^*} on $\mathcal{P}(X)$ defined by $d_{\mu^*}(A,B) := \mu^*(A \triangle B)$. Let \mathcal{M}_C and \mathcal{M}_T be the σ -algebras containing \mathcal{A} given by Carathéodory's and Tao's proofs, respectively, i.e.
 - \mathcal{M}_C is the collection of all sets $M \subseteq X$ such that $\mu^*(S) = \mu^*(M \cap S) + \mu^*(M^c \cap S)$ for all $S \subseteq X$;

• \mathcal{M}_T is the closure of \mathcal{A} with respect to d_{μ^*} . Prove that $\mathcal{M}_C = \left\{ M \subseteq X : d_{\mu^*}(M, B) = 0 \text{ for some } B \in \langle \mathcal{A} \rangle_\sigma \right\} = \mathcal{M}_T$.

Hint: Recall the definition of $\mu^*(M)$ to define B as a countable intersection of countable unions of sets in A. You can use that μ^* is countably additive on \mathcal{M}_C and \mathcal{M}_T .

- **5.** A **translation-invariant** Borel measure on \mathbb{R}^d is a measure μ defined on the Borel σ -algebra $\mathcal{B}(\mathbb{R}^d)$ such that $\mu(\vec{x} + B) = \mu(B)$ for each point $\vec{x} \in \mathbb{R}^d$ and each Borel set $B \subseteq \mathbb{R}^d$.
 - (a) Show that the Lebesgue measure (the unique extension to the Borel sigma algebra of the Lebesgue premeasure on boxes) is translation-invariant.
 - (b) Prove that \mathbb{R}^d does not admit a translation-invariant Borel *probability* measure μ . In fact, show that for any nonzero vector $\vec{x} \in \mathbb{R}^d$, there does not exist a Borel probability measure that is invariant under translation by \vec{x} .

Hint: Find a Borel transversal for the coset equivalence relation of the subgroup $\mathbb{Z}\vec{t} \leq \mathbb{R}^d$, i.e. a Borel set $W \subseteq \mathbb{R}^d$ such that $\mathbb{R}^d = \bigsqcup_{n \in \mathbb{Z}} (n\vec{x} + W)$. Do this for d = 1 first to easily find a set W.

- **6.** In a metric space X, a set $C \subseteq X$ is called a **Cantor set** if it is homeomorphic to the Cantor space $2^{\mathbb{N}}$, i.e. there is a continuous bijection $f: 2^{\mathbb{N}} \to C$ whose inverse is also continuous¹. In particular, C is a compact subset of X of cardinality continuum. See my short note on Cantor sets [pdf] to learn more about them.
 - (a) [Optional] In a connected² metric space X (such as \mathbb{R}^d), prove every Cantor set has is compact (hence closed) and has empty interior; in particular, it is nowhere dense.

HINT: If a Cantor set C has nonempty interior U, then there is a further set $V \subseteq U$ such that V is clopen relative to C, i.e. there is an open set $O \subseteq X$ and a closed set $K \subseteq X$ such that $O \cap C = V = K \cap C$. Show that V is clopen in X.

(b) The standard Cantor set in [0,1] is the set $C := \bigcap_{n \in \mathbb{N}} \bigcup_{s \in 2^n} C_s$, where each C_s is a closed interval defined inductively by setting $C_0 := [0,1]$ and letting C_{s0} and C_{s1} be the bottom third and top third closed subintervals of the closed interval C_s for each $s \in 2^{<\mathbb{N}}$. In particular, $C_0 := [0, \frac{1}{3}]$ and $C_1 := [\frac{2}{3}, 1]$, $C_{00} := [0, \frac{1}{3^2}]$, $C_{01} := [\frac{2}{3^2}, \frac{3}{3^2}]$, $C_{10} := [\frac{6}{3^2}, \frac{7}{3^2}]$, and $C_{11} := [\frac{8}{3^2}, 1]$, etc. Prove that C is indeed a Cantor set (i.e. is homeomorphic to $2^{\mathbb{N}}$) and that C is Lebesgue-null.

¹The requirement that f^{-1} is continuous is redundant, it is automatically continuous because $2^{\mathbb{N}}$ is compact and X is Hausdorff.

²A metric space is **connected** if it has no clopen sets, other than the whole space and \emptyset .

Hint: To show that the obvious bijection between $2^{\mathbb{N}}$ and C is a homeomorphism note that the C_s are relatively open in C, hence form a basis for C. For nullness, let U_s be the middle third open interval in C_s , i.e. $U_s := C_s \setminus (C_{s0} \cup C_{s1})$, and calculate $\sum_{s \in 2^{<\mathbb{N}}} \operatorname{lh}(U_s)$.

Remark: Thus, C is an example of a null set of cardinality continuum.

(c) Define a Cantor subset of [0,1] of positive Lebesgue measure.

HINT: Note that in the standard Cantor set, the open interval $U_s := C_s \setminus (C_{s0} \sqcup C_{s1})$ that we remove from C_s occupies 1/3 of C_s regardless of s. Change the construction so that U_s has length p_n , where n := lh(s) and the sequence (p_n) goes to 0 fast enough to guarantee $\sum_{n \in \mathbb{N}} 2^n p_n < 1$.

7. Let A be a finite nonempty set and let ν be a probability measure on $\mathcal{P}(A)$ such that $\nu(a) > 0$ for each $a \in A$; e.g. $A := 3 := \{0, 1, 2\}$ and $\nu(0) := 1/2$, $\nu(1) := 1/3$, and $\nu(2) := 1/6$. Let μ be the Bernoulli measure $\nu^{\mathbb{N}}$ defined in class, i.e. its value on a cylinder [w] is:

$$\mu([w]) := \nu(w_0) \cdot \nu(w_1) \cdots \nu(w_{n-1}),$$

where $w \in A^{<\mathbb{N}}$ and n := lh(w).

Fix $a_0 \in A$ and prove that $(A \setminus \{a_0\})^{\mathbb{N}}$ is μ -null, i.e. $\mu((A \setminus \{a\})^{\mathbb{N}}) = 0$.

Remark: If $|A| \ge 3$, then $(A \setminus \{a_0\})^{\mathbb{N}}$ is another example of a null set of cardinality continuum.

8. [Optional] Let \mathbb{E}_0 be the equivalence relation on $2^{\mathbb{N}}$ of eventual equality, i.e.

$$x\mathbb{E}_0 y :\Leftrightarrow \forall^{\infty} n \ x(n) = y(n),$$

where $\forall^{\infty} n$ means for all large enough n. For each n, let $\sigma_n : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ be the n^{th} bit flip map, i.e. $\sigma_n(x)$ is the same as x except that its n^{th} coordinate is equal to 1 - x(n). Let Γ be the group generated by all the σ_n . Then Γ naturally acts on $2^{\mathbb{N}}$.

- (a) Realize that the orbit equivalence relation of this action is exactly \mathbb{E}_0 . Remark: Actually, Γ is isomorphic to the direct sum $\bigoplus_{n\in\mathbb{N}}\mathbb{Z}/2\mathbb{Z}$ so it is a subgroup of the direct product $\prod_{n\in\mathbb{N}}\mathbb{Z}/2\mathbb{Z}\cong 2^{\mathbb{N}}$, hence \mathbb{E}_0 is simply the coset equivalence relation of $\bigoplus_{n\in\mathbb{N}}\mathbb{Z}/2\mathbb{Z}$ as a subgroup of $\prod_{n\in\mathbb{N}}\mathbb{Z}/2\mathbb{Z}$, just like $E_{\mathbb{Q}}$ is the coset equivalence relation of \mathbb{Q} as a subgroup of \mathbb{R} .
- (b) Note that the Bernoulli(1/2) measure is invariant under this action, i.e. for any $\mu_{1/2}$ -measurable set $A \subseteq 2^{\mathbb{N}}$ and $\gamma \in \Gamma$, we have $\mu_{1/2}(\gamma A) = \mu_{1/2}(A)$.

- (c) Prove that every transversal for \mathbb{E}_0 is not $\mu_{1/2}$ -measurable. Remark: In fact, one can also show that every transversal for \mathbb{E}_0 is not μ_p -measurable for every $p \in (0,1)$.
- 9. We say that a real $r \in \mathbb{R}$ admits a sequence of good rational approximations of exponent $\alpha > 0$ if there are infinitely many pairs $(p,q) \in \mathbb{Z} \times \mathbb{N}^+$ such that

$$|r - \frac{p}{q}| < \frac{1}{q^{\alpha}}.$$

Dirichlet's approximation theorem (or rather its immediate consequence) states that every real admits a sequence of good rational approximations of exponent 2.

Prove however that for every $\varepsilon > 0$, almost no real admits a sequence of good rational approximations of exponent $2 + \varepsilon$, i.e. the set B of all $r \in \mathbb{R}$ that admit a sequence of good rational approximations of exponent $2 + \varepsilon$ is null (with respect to Lebesgue measure).

Hint: First note that it is enough to prove the statement for [0,1) instead of \mathbb{R} . Next, express B in terms of the sets

$$A_{p,q} := \left\{ r \in \mathbb{R} : |r - \frac{p}{q}| < \frac{1}{q^{2+\varepsilon}} \right\}$$

where $p, q \in \mathbb{N}^+$ and p < q. Finally, what is the measure of $A_{p,q}$?