Due: Sep 9, 11:59pm

Math 564: Real analysis & measure theory

Homework 1

1. Let (X, d) be a metric space. Prove:

- (a) *X* is separable if and only if it is second countable, i.e. admits a countable basis.
- (b) Separability is hereditary for metric spaces, i.e. if X is separable, then every subspace $Y \subseteq X$ is also separable.
- (c) For any $Y \subseteq X$, its closure \overline{Y} is equal to $\bigcap_{n \ge 1} B_{1/n}(Y)$, where

$$B_r(Y) := \{x \in X : d(x, Y) < r\}$$

and $d(x, Y) := \inf_{y \in Y} d(x, y)$. Conclude that every closed set is G_{δ}^{1} ; equivalently, every open set is F_{σ}^{1} .

Caution: All of these statements are false for general topological spaces. Think of counter-examples.

- 2. Let A be a nonempty set (an alphabet) and consider the space $A^{\mathbb{N}}$ of infinite A-valued sequences, equipped with the metric d defined in class.
 - (a) Prove that d is in fact an **ultrametric**, i.e. $d(x,z) \le \max\{d(x,y),d(y,z)\}$ for each $x,y,z \in A^{\mathbb{N}}$.
 - (b) Prove that the metric space $(A^{\mathbb{N}}, d)$ is complete.
 - (c) Prove that $A^{\mathbb{N}}$ is compact if and only if A is finite. I encourage you to prove this using the open covers definition of compactness. (If you'd like a hint, please ask me.)
- **3.** (a) Observe that in every metric space, the clopen sets form an algebra.
 - (b) Prove that in $2^{\mathbb{N}}$, the clopen sets are exactly the finite disjoint unions of cylinders.
- **4.** Let *X* be a set and $C \subseteq \mathcal{P}(X)$. Prove:
 - (a) $\langle \mathcal{C} \rangle = \bigcup_{n \in \mathbb{N}} \mathcal{C}_n$, where $\mathcal{C}_0 := \mathcal{C}$ and

 $C_{n+1} := \{\text{complements and finite unions of sets in } C_n\}.$

(b) $[Optional] \langle \mathcal{C} \rangle_{\sigma} = \bigcup_{\alpha \in \omega_1} \mathcal{C}_{\alpha}$, where $\mathcal{C}_0 := \mathcal{C}$ and for $\alpha > 0$,

 $C_{\alpha} := \{ \text{complements and finite unions of sets in } \bigcup_{\beta < \alpha} C_{\beta} \}.$

 $[\]overline{\ }^1$ A set is G_δ (resp. F_σ) if it is a countable intersection (resp. countable union) of open (resp. closed) sets.

5. Let X be a set and $\mathcal{C} \subseteq \mathscr{P}(X)$. Put $\neg \mathcal{C} := \{S^c : S \in \mathcal{C}\}$. Let $\mathcal{S} \subseteq \mathscr{P}(X)$ be the smallest collection of sets containing $\mathcal{C} \cup \neg \mathcal{C}$ and closed under countable unions and countable intersections. Prove that $\mathcal{S} = \langle \mathcal{C} \rangle_{\sigma}$.

Hint: To show $S \supseteq \langle \mathcal{C} \rangle_{\sigma}$, we do something counter-intuitive: we define an even smaller collection $S' := \{S \in S : S \text{ and } S^c \text{ are in } S\}$ and show that S' is already a σ -algebra containing C.

- **6.** Prove that the following collections generate the Borel σ -algebra of \mathbb{R}^d :
 - (i) Balls with rational centers (i.e. in \mathbb{Q}^d) and rational radii.
 - (ii) Bounded open boxes.
 - (iii) Bounded closed boxes.
- 7. We proved in class that the function μ_p on the algebra \mathcal{A} of clopen subsets of $2^{\mathbb{N}}$ is well-defined. Deduce from this that μ_p is finitely additive on \mathcal{A} .