Math Logic: Model Theory \& Computability
Lecture 28

Coding functions.
(a) For each $k \in \mathbb{N}$, define $\langle\cdot\rangle_{v}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ by $\vec{a} \mapsto$ the least w such that for all $i<l b(\vec{a}), \quad \beta(w, i+1)=a_{i}$ and $\beta(w, 0)=k$. In other words,

$$
\langle\vec{a}\rangle_{k}=\mu_{\omega}\left(\forall i<k \beta(\omega, i+1)=a_{i} \wedge \beta(\omega, 0)=k\right),
$$

so $h i s$ is a computable taction.
(b) Define $\mu_{h}: \mathbb{N} \rightarrow \mathbb{N}$ by $\omega \mapsto \beta(\omega, 0)$.
(c) For each $i \in \mathbb{N},(1)_{i}: \mathbb{N} \rightarrow \mathbb{N}$ he defined by $\omega \mapsto \beta(\omega, i+1)$.

Observation. Note that the functions $\langle\cdot\rangle_{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ are infective anal have paicvise disjoint images. Farthecuore, the tunfiot $\mathbb{N} \rightarrow \mathbb{N}^{k}$ by $\omega \mapsto\left((\omega)_{0},(\omega)_{1}, \ldots,(\omega)_{k-1}\right)$ is a leff-invesse of $\langle\cdot\rangle_{k}$.

Abuse of notation. When applying $\left\langle\cdot s_{k}\right.$ to $\vec{a} \in \mathbb{N}^{k}$, we way dep k from the sabscent and just write $\langle\vec{a}\rangle$.
(d) Define Init sty, Tecmbey: $\mathbb{N}^{2} \rightarrow \mathbb{N}$ by

$$
\begin{aligned}
& \left.\operatorname{Init} S_{e y}(a, i):=\mu_{b}\left(\ln (b)=i \wedge \forall j<i(\mid b)_{j}=(a)_{j}\right)\right) \\
& \operatorname{Tecm} S_{e y}(a, i):=\mu_{b}\left(\ln (b)=\ln (a)-i \wedge \quad \forall j<\ln (a)-i\left((b)_{i}=(a)_{i+j}\right) .\right.
\end{aligned}
$$

(e) Define concatenation of two tuples $z: \mathbb{N}^{2} \rightarrow \mathbb{N}$ by

$$
\begin{aligned}
a * b: & =\left\langle(a)_{0}, \ldots,(a)_{u(a)-1)}(b)_{,}, \cdots,(b)_{\ln (b)-1}\right\rangle \\
& =\mu_{c}(\ln (c)=\ln (a)+\ln (b) \\
& \wedge \operatorname{Inctscy}(c, \ln (a))=a \\
& \left.\wedge \operatorname{Tcomseg}\left(c, l_{1}(a)\right)=b\right) .
\end{aligned}
$$

We can tinally paove:
Than. The set of congatable fuations is closed under primitive cecursion. Pcoofe By the Dedekied analgicy of pinitive rearsion, if

$$
\left\{\begin{array}{l}
f(\vec{a}, 0)=g(\vec{a}) \\
f(\vec{a}, n+1)=h(\vec{a}, n, f(\vec{a}, u))
\end{array}\right.
$$

and $g: \mathbb{N}^{k} \rightarrow \mathbb{N}, h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ are woyatable, then foc each $\vec{d} \in \mathbb{N}^{k}, h \in \mathbb{N}, b \in \mathbb{N}$,

$$
\begin{aligned}
& f(\vec{a}, u)=\left(j _ { \omega } ^ { \mu } \left(\ln (\omega)=n+1 \Lambda(\omega)_{0}=g(\vec{a})\right.\right. \\
&\left.\left.\wedge \forall i<n\left((\omega)_{i+1}=h(\vec{a}, i, \omega i)\right)\right)\right)_{n} .
\end{aligned}
$$

Exagle. Exponentiation $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ b) $(x, n) \mapsto \begin{cases}x^{n} & \text { if } x \neq 0 \\ 0 & \text { oblernise is coypata }\end{cases}$ ble beuse

$$
\left\{\begin{array}{l}
f(x, 0)= \begin{cases}1 & \text { if } x \neq 0 \\
0 & 0 . w .\end{cases} \\
f(x, n+1)=x \cdot f(x, n)
\end{array}\right.
$$

In particalas, it is reithonetiond. In fact:
Pcofe The set of arithuetical tanctions is also dosed under primitive recensien Pcors. HW.

Using the encoling/decodiy tuccforss and prinitive recussion, we can anow formalize U_{n} in tormal proot of Gödel's incompletenen, but this is just a tedius exercise in progenomming and we will skip it

Primitive recussive tuclions.
Def. A tantien $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is prinitive necursive if it is one of the besic

Functions in (PRI) or is obtriced tcon hun via firitely many applications of operctions (PR2) and (PR3):
(PR() (i) Successor $S: \mathbb{N} \rightarrow \mathbb{N}$ by $n \leftrightarrow n+1$.
(ii) For each $m, k \in \mathbb{N}$, the constant fanation $C_{m}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N} b_{y} \vec{a} \mapsto k$.
(iii) For each $\leqslant i \leqslant k \in \mathbb{N}$, the projection $p_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ by $\left(a_{1}, \ldots, a_{k}\right) \mapsto a_{i}$.
(PR2) Compolition: for cach $m, k \in \mathbb{N}, g: \mathbb{N}^{m} \rightarrow \mathbb{N}$ and $f_{i}: \mathbb{N}^{k} \rightarrow \mathbb{N}, i<m$, the function $h: \mathbb{N}^{k} \rightarrow \mathbb{N}$ b, $h(\vec{a}):=\left(t_{0}(\vec{a}), \ldots, f_{m-1}(\vec{a})\right)$.
(PR3) Pimikine recursion: tor ench $k, g: \mathbb{N}^{k} \rightarrow \mathbb{N}, h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$, the anisce tantion satiobying

$$
\left\{\begin{array}{l}
f(\vec{a}, 0)=g(\vec{a}) \\
f(\vec{a}, h+1)=h(\vec{a}, n, f(\vec{a}, n))
\end{array}\right.
$$

for all $\vec{a} \in \mathbb{N}^{k}, n \in \mathbb{N}$.
We call a relation $R \subseteq \mathbb{N}^{k}$ piomitive recacsive if such is $\mathbb{1}_{R}: \mathbb{N}^{k} \rightarrow \mathbb{N}$.
Pcop. The following tucfions one primitive recerive:
(a) pre⿻lecessor, sate sultraction, addition, maltiplication, exponeatiation.

(c) the nelations $=$ and \leq.

Proof. (a) $P D: \mathbb{N} \rightarrow \mathbb{N}$ by $n \mapsto\left\{\begin{array}{cl}n-1 & \text { if } n>0 \\ 0 & \text { if } n=0 \text {. let } g:=C_{0}^{0}: \mathbb{N}^{0} \rightarrow \mathbb{N}, h: \mathbb{N}^{2} \rightarrow \mathbb{N} \text { le }\end{array}\right.$ detined by $h(n, b):=n=P_{1}^{2}(n, b)$. Nen The rest of (a) is HWW.

$$
\left\{\begin{array}{l}
P D(0)=g \\
P D(n+1)=h(n, P D(n))
\end{array}\right.
$$

(b) $\left\{\begin{array}{l}\text { bit }(0)=C_{0}^{0} \\ \text { bit }(n-1))=C_{1}^{2}(n, \operatorname{bit}(n))\end{array} \quad\right.$ and $\overline{\operatorname{bit}}(n)=1=n$ or $\left\{\begin{array}{l}\overline{\operatorname{bit}}(0)=C_{1}^{0} \\ \overline{\operatorname{bit}}(n-1)\end{array}\right)=C_{0}^{2}(n$, bit $(n))$.
(c) $\mathbb{1}_{2}(a, b)=\overline{\text { bit }}((a-b)+(b-a))$ and $1_{\leq}(a, b)=\operatorname{bit}(a-b)$.

