Mathematical Logic

Homework 9

Due: May 1 (Wed)

- **1.** Call a collection S of sets **nested** if $A \subseteq B$ or $B \subseteq A$ for any two sets $A, B \in S$. Prove that for a nested collection S of consistent σ -theories, the union $T_{\infty} := \bigcup T := \bigcup_{T \in S} T$ is consistent.
- **2.** Let σ be a signature and prove:
 - (a) \vdash (*t* = *t*) for each σ -term *t*.

REMARK: I said during lecture that there would be an issue with this because of my convention that a quantified variable does not appear outside of the range of quantification, but I don't see the issue anymore. Please let me know if there is an issue after all.

- (b) $\vdash (\varphi(t/v) \rightarrow \exists v \varphi)$ for each σ -formula φ and each σ -term *t* that is okay to plug in for *v* in φ and that does not contain the variable *v*.
- (c) $\vdash \exists v(t = v)$ for each σ -term *t* that does not contain the variable *v*.
- **3.** Prove from scratch the following **special case of Gödel's Completeness theorem**: Let σ be a finite signature and let $\varphi := \exists v_1 \dots \exists v_5 (\psi \land \forall v \bigvee_{i=1}^5 v = v_i)$, where $\psi(v_1, \dots, v_5)$ is a quantifier free extended σ -formula.