1. Call a collection \mathcal{S} of sets nested if $A \subseteq B$ or $B \subseteq A$ for any two sets $A, B \in \mathcal{S}$. Prove that for a nested collection \mathcal{S} of consistent σ-theories, the union $T_{\infty}:=\bigcup \mathcal{T}:=\bigcup_{T \in \mathcal{S}} T$ is consistent.
2. Let σ be a signature and prove:
(a) $\vdash(t=t)$ for each σ-term t.

Remark: I said during lecture that there would be an issue with this because of my convention that a quantified variable does not appear outside of the range of quantification, but I don't see the issue anymore. Please let me know if there is an issue after all.
(b) $\vdash(\varphi(t / v) \rightarrow \exists v \varphi)$ for each σ-formula φ and each σ-term t that is okay to plug in for v in φ and that does not contain the variable v.
(c) $\vdash \exists v(t=v)$ for each σ-term t that does not contain the variable v.
3. Prove from scratch the following special case of Gödel's Completeness theorem: Let σ be a finite signature and let $\varphi:=\exists v_{1} \ldots \exists v_{5}\left(\psi \wedge \forall v \bigvee_{i=1}^{5} v=v_{i}\right)$, where $\psi\left(v_{1}, \ldots, v_{5}\right)$ is a quantifier free extended σ-formula.

