Mathematical Logic HOMEWORK 8 Due: Apr 24 (Wed)

- **1.** Let σ be a signature and $A := (A, \sigma^A)$ be a σ -structure. Let $P \subseteq A$. Prove that the class of *P*-definable functions is closed under composition, i.e. if $g : A^k \to A$ and $f_i : A^m \to A$, $i \leq k$, are *P*-definable functions in *A*, then the function $g(f_1, f_2, \dots, f_k) : A^m \to A$ defined by $\vec{a} \mapsto g(f_1(\vec{a}), f_2(\vec{a}), \dots, f_k(\vec{a}))$ is *P*-definable in *A*.
- 2. For any σ -formula φ , prove $\vdash (\varphi \rightarrow \neg \neg \varphi)$. In other words, construct a formal proof of the formula $\varphi \rightarrow \neg \neg \varphi$ from the empty theory.
- **3.** Prove the Constant Substitution lemma.
- **4.** As mentioned in class, realize that Compactness theorem is equivalent to the statement that for any σ -theory T and σ -sentence φ , if $T \models \varphi$ then $T_0 \models \varphi$ for some finite subtheory $T_0 \subseteq T$.
- **5.** Prove the following:
 - (a) (Associativity of +) PA $\vdash \forall x \forall y \forall z[(x + y) + z = x + (y + z)]$,
 - (b) $PA \vdash \forall x(0 + x = x)$,
 - (c) (Commutativity of +) $PA \vdash \forall x \forall y (x + y = y + x)$.

Remark: Good luck!