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Mathematical Logic Homework 7 Due: Apr 17 (Wed)

1.∗ Prove the following theorems, noting first that Lovász’s theorem is a special case of
Łoś–Tarski. Nonetheless, I suggest proving Lovász’s theorem first because it’s more
approachable.

(a) Łoś–Tarski Theorem. Let σ be a signature and C be a finitely axiomatizable class of
σ -structured. Then C is closed under substructures1 if and only if C is axiomatized
by a universal σ -sentence.

Remark: I had originally written the statement of the Łoś–Tarski theorem in-
correctly2, demanding on the left that C is closed only under finitely generated
substructures, but this is false: let C be the class of all linear orders with a least
element3.

(b) Let k ∈N and call a (potentially infinite) graph k-coverable if it admits ⩽ k vertices
such that each edge is incident to at least one of them.

Lovász’s Theorem. For each k ∈ N, there exists finitely many finite graphs
H1,H2, . . . ,Hm (forbidden patterns) such that for every graph G, we have that
G is k-coverable if and only if it does not contain any of the Hi as a subgraph.

Hint: First prove that if every finite subcover of a graph G is k-coverable, then
such is G. Then take the collection of minimal counter-examples to k-coverability
and prove that this collection has to be finite.

Remark: Lovász’s original proof is

2. Let σS ..= (0,S) where 0 is a constant symbol and S is a unary function symbol. Let TS
be the σS-theory consisting of the following (infinitely-many) axioms:

(S1) Zero has no predecessor: ∀x(S(x) , 0).

(S2) The successor function is one-to-one: ∀x∀y(S(x) = S(y)→ x = y).

(S3) Any nonzero number is a successor of something: ∀x(x , 0→∃y(x = S(y))).

(S4∞) There are no cycles: ϕn
..= ∀x(Sn(x) , x) for every n ∈N.

(a) Observe that N S
..= (N,0,S) is a (standard) model of TS and describe all models of

TS .

(b) Prove that TS is κ-categorical for each uncountable cardinal κ, and deduce that TS
is complete.

1By this we mean that if a σ -structure is in C then so are all of its substructures.
2Thanks Ruben for pointing this out.
3Thanks Vahagn for suggesting this example.
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3. Let K be a field and let K be an algebraic closure of K . A nonconstant polynomial
f ∈ K[X1, ...,Xn] is called irreducible if whenever f = gh for some g,h ∈ K[X1, ...,Xn],
either deg(g) = 0 or deg(h) = 0. Furthermore, f is called absolutely irreducible if it is
irreducible in K[X1, ...,Xn] (view f as an element of K[X1, ...,Xn]).

For example, the polynomial X2 + 1 ∈ R[X] is irreducible, but it is not absolutely
irreducible since X2 + 1 = (X + i)(X − i) in C[X]. On the other hand, XY − 1 ∈Q[X,Y ] is
absolutely irreducible.

Let Fp = Z/pZ and prove the following:

Theorem (Noether–Ostrowski Irreducibility Theorem). For f ∈Z[X1, ...,Xn] and prime
p, let fp denote the polynomial in Fp[X1, ...,Xn] obtained by applying the canonical mapZ→
Z/pZ to the coefficients of f (i.e. mod-ing out the coefficients by p). For all f ∈Z[X1, ...,Xn],
f is absolutely irreducible (as an element of Q[X1, ...,Xn]) if and only if fp is absolutely
irreducible (as an element of Fp[X1, ...,Xn]) for all sufficiently large primes p.

Hint: Your proof should be shorter than the statement of the theorem.
Remark: The original algebraic proof of this theorem is quite involved.
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