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Mathematical Logic Homework 6 Due: Apr 3 (Wed)

1. Show that the following classes of structures are not axiomatizable, namely:

(a) Cycle graphs, i.e. undirected graphs that look like an undirected cycle of some
length.

(b) Non-bipartite graphs.

(c) Groups that contain elements of arbitrarily large finite order.

(d) Torsion group, i.e. groups in which every element has a finite order.

2. Overspill. Let M be a nonstandard model of PA, let ϕ(x, y⃗) be an extended σarthm-
formula, where |y⃗| = k, and let a⃗ ∈Mk. Show that if M |= ϕ(n, a⃗) for infinitely many
n ∈NM , then there is w ∈M \NM such that M |= ϕ(w, a⃗). In other words, no infinite
subset of NM is definable in M ; in particular, NM itself is not definable.

3. Let M be a nonstandard model of PA.

(a) For all a,b ∈M, define

a ∼ b ⇐⇒ |a− b| ∈NM ,

where z = |a− b| is the unique element in M such that a+ z = b or b + z = a. Show
that ∼ is an equivalence relation on M and that it is NOT definable in M .

(b) Let Q ..= M/ ∼ denote the quotient by this equivalence relation, i.e. Q ..= {[a] : a ∈M},
where [a] denotes the equivalence class of a. Define the relation <Q on Q as follows:
for all [a], [b] ∈Q,

[a] <Q [b] ⇐⇒ there is c ∈M \NM such that a+ c = b.

Show that <Q is well-defined (does not depend on the representatives a,b) and is a
strict linear order on Q.

(c) Show that the order (Q,<Q) has a least element but no greatest element, and it is a
dense (in itself), i.e. u <Q v =⇒ ∃w(u <Q w <Q v) for all u,v ∈Q. Thus, (Q,<Q) is
isomorphic to (Q⩾0,<).

4. Let σgph
..= (E) be the signature for graphs and let

T ..=
{
ϕsmpl,ϕ2reg

}
∪
{
ϕn : n ∈N+} ,

where ϕsmpl says that E is symmetric and irreflexive (i.e. the graph is simple), ϕ2reg
says that every vertex has exactly 2 neighbours (i.e. the graph is 2-regular), and ϕn says
that there is no cycle of length n.

(a) Observe that every model of T is a graph whose connected components are bi-
infinite lines (let’s call them Z-lines).
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(b) Prove that two models of T are isomorphic if and only if they have equinumerous
sets of connected components (i.e. the sets of connected components have equal
cardinality).

(c) Conclude that any two uncountable models of T of the same cardinality are
isomorphic.

Hint: This uses our usual blackbox from cardinal arithmetic: |A×B| = max(|A|, |B|)
for sets A,B, at least one of which is infinite.

(d) Prove that T is complete.

Hint: Recall that T is complete if and only if any two models A,B of T have the
same theory. Use some Löwenheim–Skolem theorem to upgrade the given models
A,B to uncountable models of the same cardinality.

(e) Conclude that for each cardinal κ , 0 (e.g. κ ∈N+ or κ ..= ℵ0), T is equivalent to
Th(Zκ), where Zκ is the unique (up to isomorphism) model of T that has κ-many
connected components. In particular, Th(Z 1) = Th(Zκ) for all cardinals κ , 0.
Remark: The fact that Th(Z 1) = Th(Z 2) illustrates, once again, that connectedness
is not captured by first-order logic.

5. Hall’s marriage theorem for infinite graphs. A matching in an (undirected with no
loops) graph G ..= (V ,E) is a set M of (undirected) edges such that no two edges in M
are adjacent. For a subset U ⊆ V of vertices, a U -perfect matching is a matching M
such that each vertex in U is incident to a (necessarily unique) edge in M. A V -perfect
matching is just called a perfect matching. Finally, denote by NG(U ) the set of all
vertices that have a neighbour in U .

Theorem (Hall’s marriage, finite graphs). Let G ..= (V ,E) be a finite bipartite graph with
a bipartition V ..= X ∪Y . Then there is an X-perfect matching if and only if |NG(U )| ⩾ |U |
for each U ⊆ X.

Using Hall’s marriage theorem for finite graphs deduce the following version for
infinite locally finite1 graphs:

Theorem (Hall’s marriage, infinite graphs). Let G ..= (V ,E) be a locally finite bipartite
graph with a bipartition V ..= X ∪ Y . Then there is an X-perfect matching if and only if
|NG(U )| ⩾ |U | for each finite U ⊆ X.

6. A colouring of a set X with a set K is just a function c : X → K , and we refer to the
elements of K as colours. A finite colouring of X is a colouring with a finite set of
colours. For a colouring c : X→ K , a colour class is a set of the form c−1(k) for some
k ∈ K .

The following is a well known theorem of additive combinatorics:

Theorem (van der Waerden, infinitary). For every finite colouring of N, one of the colour
classes contains arbitrarily long arithmetic progressions.

Use this theorem and compactness to derive the following finitary version:

1Every vertex has only finitely many neighbours.
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Theorem (van der Waerden, finitary). For each k,ℓ ∈N+, there exists n ∈N+ such that
for each colouring of {0,1, ...,n− 1} with k colours, one of the colour classes contains an
arithmetic progression of length ℓ.
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