Mathematical Logic

Homework 6

Due: Apr 3 (Wed)

- 1. Show that the following classes of structures are not axiomatizable, namely:
 - (a) Cycle graphs, i.e. undirected graphs that look like an undirected cycle of some length.
 - (b) Non-bipartite graphs.
 - (c) Groups that contain elements of arbitrarily large finite order.
 - (d) Torsion group, i.e. groups in which every element has a finite order.
- 2. Overspill. Let M be a nonstandard model of PA, let $\varphi(x, \vec{y})$ be an extended σ_{arthm} formula, where $|\vec{y}| = k$, and let $\vec{a} \in M^k$. Show that if $M \models \varphi(n, \vec{a})$ for infinitely many $n \in \mathbb{N}^M$, then there is $w \in M \setminus \mathbb{N}^M$ such that $M \models \varphi(w, \vec{a})$. In other words, no infinite
 subset of \mathbb{N}^M is definable in M; in particular, \mathbb{N}^M itself is not definable.
- 3. Let *M* be a nonstandard model of PA.
 - (a) For all $a, b \in M$, define

$$a \sim b \iff |a-b| \in \mathbb{N}^M$$
,

where z = |a - b| is the unique element in M such that a + z = b or b + z = a. Show that \sim is an equivalence relation on M and that it is NOT definable in M.

(b) Let Q := M/~ denote the quotient by this equivalence relation, i.e. Q := {[a] : a ∈ M}, where [a] denotes the equivalence class of a. Define the relation <_Q on Q as follows: for all [a], [b] ∈ Q,

 $[a] <_Q [b] \iff$ there is $c \in M \setminus \mathbb{N}^M$ such that a + c = b.

Show that $<_Q$ is well-defined (does not depend on the representatives *a*, *b*) and is a strict linear order on *Q*.

- (c) Show that the order $(Q, <_Q)$ has a least element but no greatest element, and it is a dense (in itself), i.e. $u <_Q v \implies \exists w (u <_Q w <_Q v)$ for all $u, v \in Q$. Thus, $(Q, <_Q)$ is isomorphic to $(\mathbb{Q}_{\geq 0}, <)$.
- **4.** Let $\sigma_{gph} := (E)$ be the signature for graphs and let

$$T := \{\varphi_{\text{smpl}}, \varphi_{2\text{reg}}\} \cup \{\varphi_n : n \in \mathbb{N}^+\},\$$

where φ_{smpl} says that *E* is symmetric and irreflexive (i.e. the graph is simple), φ_{2reg} says that every vertex has exactly 2 neighbours (i.e. the graph is 2-regular), and φ_n says that there is no cycle of length *n*.

(a) Observe that every model of T is a graph whose connected components are biinfinite lines (let's call them \mathbb{Z} -lines).

- (b) Prove that two models of *T* are isomorphic if and only if they have equinumerous sets of connected components (i.e. the sets of connected components have equal cardinality).
- (c) Conclude that any two uncountable models of T of the same cardinality are isomorphic.

HINT: This uses our usual blackbox from cardinal arithmetic: $|A \times B| = \max(|A|, |B|)$ for sets *A*, *B*, at least one of which is infinite.

(d) Prove that *T* is complete.

HINT: Recall that T is complete if and only if any two models A, B of T have the same theory. Use some Löwenheim–Skolem theorem to upgrade the given models A, B to uncountable models of the same cardinality.

- (e) Conclude that for each cardinal $\kappa \neq 0$ (e.g. $\kappa \in \mathbb{N}^+$ or $\kappa := \aleph_0$), T is equivalent to $\operatorname{Th}(\mathbb{Z}_{\kappa})$, where \mathbb{Z}_{κ} is the unique (up to isomorphism) model of T that has κ -many connected components. In particular, $\operatorname{Th}(\mathbb{Z}_1) = \operatorname{Th}(\mathbb{Z}_{\kappa})$ for all cardinals $\kappa \neq 0$. REMARK: The fact that $\operatorname{Th}(\mathbb{Z}_1) = \operatorname{Th}(\mathbb{Z}_2)$ illustrates, once again, that connectedness is not captured by first-order logic.
- 5. Hall's marriage theorem for infinite graphs. A matching in an (undirected with no loops) graph G := (V, E) is a set M of (undirected) edges such that no two edges in M are adjacent. For a subset $U \subseteq V$ of vertices, a U-perfect matching is a matching M such that each vertex in U is incident to a (necessarily unique) edge in M. A V-perfect matching is just called a perfect matching. Finally, denote by $N_G(U)$ the set of all vertices that have a neighbour in U.

Theorem (Hall's marriage, finite graphs). Let G := (V, E) be a finite bipartite graph with a bipartition $V := X \cup Y$. Then there is an X-perfect matching if and only if $|N_G(U)| \ge |U|$ for each $U \subseteq X$.

Using Hall's marriage theorem for finite graphs deduce the following version for infinite locally finite¹ graphs:

Theorem (Hall's marriage, infinite graphs). Let G := (V, E) be a locally finite bipartite graph with a bipartition $V := X \cup Y$. Then there is an X-perfect matching if and only if $|N_G(U)| \ge |U|$ for each finite $U \subseteq X$.

6. A **colouring** of a set *X* with a set *K* is just a function $c : X \to K$, and we refer to the elements of *K* as **colours**. A **finite colouring** of *X* is a colouring with a finite set of colours. For a colouring $c : X \to K$, a **colour class** is a set of the form $c^{-1}(k)$ for some $k \in K$.

The following is a well known theorem of additive combinatorics:

Theorem (van der Waerden, infinitary). For every finite colouring of \mathbb{N} , one of the colour classes contains arbitrarily long arithmetic progressions.

Use this theorem and compactness to derive the following finitary version:

¹Every vertex has only finitely many neighbours.

Theorem (van der Waerden, finitary). For each $k, \ell \in \mathbb{N}^+$, there exists $n \in \mathbb{N}^+$ such that for each colouring of $\{0, 1, ..., n-1\}$ with k colours, one of the colour classes contains an arithmetic progression of length ℓ .