1. Show that the following classes of structures are not axiomatizable, namely:
(a) Cycle graphs, i.e. undirected graphs that look like an undirected cycle of some length.
(b) Non-bipartite graphs.
(c) Groups that contain elements of arbitrarily large finite order.
(d) Torsion group, i.e. groups in which every element has a finite order.
2. Overspill. Let M be a nonstandard model of PA, let $\varphi(x, \vec{y})$ be an extended $\sigma_{\text {arthm }^{-}}$ formula, where $|\vec{y}|=k$, and let $\vec{a} \in M^{k}$. Show that if $M \vDash \varphi(n, \vec{a})$ for infinitely many $n \in \mathbb{N}^{M}$, then there is $w \in M \backslash \mathbb{N}^{M}$ such that $M \vDash \varphi(w, \vec{a})$. In other words, no infinite subset of \mathbb{N}^{M} is definable in M; in particular, \mathbb{N}^{M} itself is not definable.
3. Let M be a nonstandard model of PA.
(a) For all $a, b \in M$, define

$$
a \sim b \Longleftrightarrow|a-b| \in \mathbb{N}^{M},
$$

where $z=|a-b|$ is the unique element in M such that $a+z=b$ or $b+z=a$. Show that \sim is an equivalence relation on M and that it is NOT definable in \boldsymbol{M}.
(b) Let $Q:=M / \sim$ denote the quotient by this equivalence relation, i.e. $Q:=\{[a]: a \in M\}$, where [a] denotes the equivalence class of a. Define the relation $<_{Q}$ on Q as follows: for all $[a],[b] \in Q$,

$$
[a]<_{Q}[b] \Longleftrightarrow \text { there is } c \in M \backslash \mathbb{N}^{M} \text { such that } a+c=b
$$

Show that $<_{Q}$ is well-defined (does not depend on the representatives a, b) and is a strict linear order on Q.
(c) Show that the order $\left(Q,<_{Q}\right)$ has a least element but no greatest element, and it is a dense (in itself), i.e. $u<_{Q} v \Longrightarrow \exists w\left(u<_{Q} w<_{Q} v\right)$ for all $u, v \in Q$. Thus, $\left(Q,<_{Q}\right)$ is isomorphic to ($\mathbb{Q}_{\geqslant 0},<$).
4. Let $\sigma_{\mathrm{gph}}:=(E)$ be the signature for graphs and let

$$
T:=\left\{\varphi_{\text {smpl }}, \varphi_{2 \mathrm{reg}}\right\} \cup\left\{\varphi_{n}: n \in \mathbb{N}^{+}\right\},
$$

where $\varphi_{\text {smpl }}$ says that E is symmetric and irreflexive (i.e. the graph is simple), $\varphi_{2 \text { reg }}$ says that every vertex has exactly 2 neighbours (i.e. the graph is 2 -regular), and φ_{n} says that there is no cycle of length n.
(a) Observe that every model of T is a graph whose connected components are biinfinite lines (let's call them \mathbb{Z}-lines).
(b) Prove that two models of T are isomorphic if and only if they have equinumerous sets of connected components (i.e. the sets of connected components have equal cardinality).
(c) Conclude that any two uncountable models of T of the same cardinality are isomorphic.
Hint: This uses our usual blackbox from cardinal arithmetic: $|A \times B|=\max (|A|,|B|)$ for sets A, B, at least one of which is infinite.
(d) Prove that T is complete.

Hint: Recall that T is complete if and only if any two models $\boldsymbol{A}, \boldsymbol{B}$ of T have the same theory. Use some Löwenheim-Skolem theorem to upgrade the given models $\boldsymbol{A}, \boldsymbol{B}$ to uncountable models of the same cardinality.
(e) Conclude that for each cardinal $\kappa \neq 0$ (e.g. $\kappa \in \mathbb{N}^{+}$or $\kappa:=\aleph_{0}$), T is equivalent to $\operatorname{Th}\left(\boldsymbol{Z}_{\mathcal{K}}\right)$, where $\boldsymbol{Z}_{\mathcal{K}}$ is the unique (up to isomorphism) model of T that has κ-many connected components. In particular, $\operatorname{Th}\left(\boldsymbol{Z}_{1}\right)=\operatorname{Th}\left(\boldsymbol{Z}_{\kappa}\right)$ for all cardinals $\kappa \neq 0$.
Remark: The fact that $\operatorname{Th}\left(\boldsymbol{Z}_{1}\right)=\operatorname{Th}\left(\boldsymbol{Z}_{2}\right)$ illustrates, once again, that connectedness is not captured by first-order logic.
5. Hall's marriage theorem for infinite graphs. A matching in an (undirected with no loops) graph $G:=(V, E)$ is a set M of (undirected) edges such that no two edges in M are adjacent. For a subset $U \subseteq V$ of vertices, a U-perfect matching is a matching M such that each vertex in U is incident to a (necessarily unique) edge in M. A V-perfect matching is just called a perfect matching. Finally, denote by $N_{G}(U)$ the set of all vertices that have a neighbour in U.

Theorem (Hall's marriage, finite graphs). Let $G:=(V, E)$ be a finite bipartite graph with a bipartition $V:=X \cup Y$. Then there is an X-perfect matching if and only if $\left|N_{G}(U)\right| \geqslant|U|$ for each $U \subseteq X$.

Using Hall's marriage theorem for finite graphs deduce the following version for infinite locally finite ${ }^{1}$ graphs:

Theorem (Hall's marriage, infinite graphs). Let $G:=(V, E)$ be a locally finite bipartite graph with a bipartition $V:=X \cup Y$. Then there is an X-perfect matching if and only if $\left|N_{G}(U)\right| \geqslant|U|$ for each finite $U \subseteq X$.
6. A colouring of a set X with a set K is just a function $c: X \rightarrow K$, and we refer to the elements of K as colours. A finite colouring of X is a colouring with a finite set of colours. For a colouring $c: X \rightarrow K$, a colour class is a set of the form $c^{-1}(k)$ for some $k \in K$.

The following is a well known theorem of additive combinatorics:
Theorem (van der Waerden, infinitary). For every finite colouring of \mathbb{N}, one of the colour classes contains arbitrarily long arithmetic progressions.

Use this theorem and compactness to derive the following finitary version:

[^0]Theorem (van der Waerden, finitary). For each $k, \ell \in \mathbb{N}^{+}$, there exists $n \in \mathbb{N}^{+}$such that for each colouring of $\{0,1, \ldots, n-1\}$ with k colours, one of the colour classes contains an arithmetic progression of length ℓ.

[^0]: ${ }^{1}$ Every vertex has only finitely many neighbours.

