Mathematical Logic

Homework 5

Due: Mar 20 (Wed)

- **0.** Let *T* be a σ -theory, φ and ψ be σ -sentences. Prove:
 - (a) " \models " in terms of satisfiability: $T \models \varphi$ if and only if $T \cup \{\neg \varphi\}$ is not satisfiable.
 - (b) **Deduction:** $T \models (\varphi \rightarrow \psi)$ if and only if $T \cup \{\varphi\} \models \psi$.
 - (c) **Constant/exists elimination:** Let $\theta(\vec{x})$ be an extended σ -formula, where $\vec{x} := (x_1, x_2, ..., x_n)$. Let $\vec{c} := (c_1, c_2, ..., c_n)$ be a vector of constant symbols which do not appear in σ and let $\theta(\vec{c})$ be the sentence in the signature $\tilde{\sigma} := \sigma \cup \{c_1, c_2, ..., c_n\}$ obtained by replacing each variable x_i in θ with c_i , for i = 1, 2, ..., n. Then

 $T \cup \{\theta(\vec{c})\} \models \psi$ if and only if $T \cup \{\exists \vec{x} \theta(\vec{x})\} \models \psi$.

- **1.** Let A_0, A_1, \dots be σ -structures such that $A_0 \subseteq A_1 \subseteq A_2 \subseteq \dots$
 - (a) Show that there is a unique σ -structure A with underlying set $A := \bigcup_{n \in \mathbb{N}} A_n$ such that $A_n \subseteq A$ for all $n \in \mathbb{N}$.
 - (b) Prove that $A_0 \leq A_1 \leq A_2 \leq \dots$ if and only if $A_n \leq A$ for all $n \in \mathbb{N}$.
- **2.** Sufficient condition for elementarity. Let *B* be a σ -structure and $A \subseteq B$. Suppose that for every finite $P \subseteq A$ and $b \in B$, there exists an automorphism *h* of *B* that fixes *P* pointwise (i.e. h(p) = p for all $p \in P$) and sends *b* into *A*, i.e. $h(b) \in A$. Prove that $A \leq B$.
- **3.** Prove that $(\mathbb{Q}, <) \leq (\mathbb{R}, <)$. Conclude that $(\mathbb{Q}, <) \equiv (\mathbb{R}, <)$, but $(\mathbb{Q}, <) \ncong (\mathbb{R}, <)$.

HINT: Use Question 2 and the ultrahomogeneity of $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ (see Question 2(a) of Homework 2).

- 4. Let σ be a signature.
 - (a) Prove that if a σ -theory *T* is finitely axiomatizable, then there is a finite axiomatization $T_0 \subseteq T$ of *T*.
 - (b) Deduce that the class of all infinite σ -structures is not finitely axiomatizable.
 - (c) Also deduce that the class of all bipartite graphs is not finitely axiomatizable.
- 5. Lefschetz Principle (weak version). Let φ be a σ_{rng} -sentence, where $\sigma_{rng} \coloneqq (0, 1, +, \cdot)$ is the signature for rings. Prove that if φ holds in all algebraically closed fields of characteristic zero (i.e. $ACF_0 \models \varphi$), then it holds in all algebraically closed fields of large enough characteristic (i.e. $ACF_p \models \varphi$ for large enough primes $p \in \mathbb{N}$).

REMARK: The strong version says that this is "if and only if", and it follows immediately from the completeness of ACF_0 and ACF_p , which we will prove later.

REMARK: Solomon Lefschetz was an algebraic topologist/geometer who stated this as a philosophical principle, and logicians turned this into an actual theorem.

6. Let σ be a signature and T, S be σ -theories. Suppose that for each σ -structure M,

 $M \models \varphi$ for every $\varphi \in T$ if and only if $M \models \psi$ for some $\psi \in S$.

In other words, if we allowed ourselves to write infinite conjunctions and disjunctions, we would *informally* write

$$\bigwedge_{\varphi \in T} \varphi \iff \bigvee_{\psi \in S} \psi$$

Prove that there are finite subsets $T_0 \subseteq T$ and $S_0 \subseteq S$ such that the sentences $\bigwedge_{\varphi \in T_0} \varphi$ and $\bigvee_{\psi \in S_0} \psi$ are equivalent, i.e.

$$\emptyset \models (\bigwedge_{\varphi \in T_0} \varphi \leftrightarrow \bigvee_{\psi \in S_0} \psi).$$

Deduce that T_0 axiomatizes T, so T is finitely axiomatizable.

HINT: Prove that $T \cup \{\neg \psi : \psi \in S\}$ contains a finite non-satisfiable subset *F*, and let $T_0 := \{\varphi \in T : \varphi \in F\}$ and $S_0 := \{\psi \in S : \neg \psi \in F\}$.

7. [*Optional*] The logic topology. For a signature σ , let \mathcal{T}_{σ} denote the set of all maximal satisfiable σ -theories and equip it with the topology generated by the sets of the form

$$[\varphi] \coloneqq \{T \in \mathcal{T}_{\sigma} : \varphi \in T\}$$

for a σ -sentence φ .

- (a) Show that the sets $[\varphi]$ are clopen and form a basis for this topology, making it a 0-dimensional Hausdorff space homeomorphic to a subset of $2^{\text{Sentences}(\sigma)}$.
- (b) Realize that the Compactness theorem simply says that \mathcal{T}_{σ} is compact. Thus, \mathcal{T}_{σ} is homeomorphic to a *closed* subset of $2^{\text{Sentences}(\sigma)}$.

HINT: Recall the definition of compactness in terms of collections of closed sets with the finite intersection property.

(c) Observe that Question 6 simply says that the only clopen sets in \mathcal{T}_{σ} are the basic ones, i.e. the sets of the form $[\varphi]$.