Mathematical Logic

Homework 4

Due: Mar 13 (Wed)

1. Let $\sigma \subseteq \sigma'$ be signatures. Prove that if a σ -structure $A := (A, \sigma)$ is a reduct of a σ' -structure $A' := (A, \sigma')$, then for every σ -formula $\varphi(\vec{v})$ and $\vec{a} \in A^n$,

 $A \models \varphi(\vec{a})$ if and only if $A' \models \varphi(\vec{a})$.

- 2. For each σ -structure A and $P \subseteq A$, the collection $\text{Def}_A(P)$ of P-definable sets of A is the smallest P-constructively closed collection containing
 - the constant singletons: $\{c^A\}$ for each $c \in \text{Const}(\sigma)$;
 - the graphs of functions: $\operatorname{Graph}(f^A)$ for each $f \in \operatorname{Func}(\sigma)$;
 - the relations R^A for each $R \in \text{Rel}(\sigma)$ and the equality relation (i.e. the diagonal in A^2).
- **3.** Let σ be a finite signature without function symbols (e.g. the signature for graphs).
 - (a) Prove that for each satisfiable existential σ -sentence φ there is a finite collection \mathcal{F} of finite σ -structures such that for every σ -structure A, we have $A \models \varphi$ if and only if A has a substructure isomorphic to one in \mathcal{F} .
 - (b) Deduce the dual statement for universal formulas: for each universal σ -sentence φ there is a finite collection \mathcal{F} of finite σ -structures (**forbidden patterns**) such that for every σ -structure A, we have $A \models \varphi$ if and only if no substructure of A is isomorphic to one in \mathcal{F} .
 - (c) [*Optional*] Recall that a (simple) graph is called **planar** if it can be drawn on the plane without any two edges intersecting (more precisely, embedded into \mathbb{R}^2 as a topological space). This definition itself is not first-order, nevertheless the class of planar graphs is axiomatizable due to Kuratowski's theorem. Show that in fact, the class of planar graphs is axiomatizable by a **universal theory**, i.e. a theory containing only universal sentences.
- 4. Prove that for a σ -theory *T* the following are equivalent:
 - (1) *T* is semantically σ -complete.
 - (2) $\operatorname{Th}(A) = \operatorname{Thm}_{\sigma}(T)$ or each σ -structure $A \models T$, where

Thm_{σ}(*T*) := { $\varphi \in$ Sentences(σ) : *T* |= φ }

is the set **theorems of** *T*.

- (3) $A \equiv B$ for all σ -structures $A, B \models T$.
- 5. Let $n \in \mathbb{N}^+$ and abbreviate $\dot{n} := 1 + 1 + \dots + 1$. Prove:

п

(a) For each prime $p \in \mathbb{N}$ and a natural number $n \in \mathbb{N}$, prove that

FIELDS_{*p*}
$$\models \dot{n} = \dot{r}$$
,

where r is the remainder of the division of n by p.

- (b) FIELDS₀ $\models \dot{n} \neq 0$.
- 6. Prove:
 - (a) $PA \models \forall x \forall y \forall z[(x+y)+z=x+(y+z)],$
 - (b) $PA \models \forall x(0 + x = x)$,
 - (c) $PA \models \forall x \forall y (x + y = y + x).$

CAUTION: PA has **many** models different from *N*, even uncountable ones.