Mathematical Logic How

Homework 2

Due: Feb 28 (Wed)

Below let σ denote a signature.

- **1.** A σ -structure is called **rigid** if it has no automorphisms¹ other than the identity. Show that the structures $N := (\mathbb{N}, 0, S, +, \cdot)$ and $Q := (\mathbb{Q}, 0, 1, +, \cdot)$ are rigid. Here, the symbol *S* is interpreted as the successor operation $n \mapsto n + 1$ and all other symbols are with their standard interpretations.
- 2. A σ -structure A is called **ultrahomogeneous** if any σ -isomorphism between two finitely generated² substructures extends to a σ -automorphism of the whole structure A, i.e. if B, C are finitely generated substructures of A and $h : B \xrightarrow{\sim} C$ is a σ -isomorphism, then there is a σ -automorphism \overline{h} of A extending h.
 - (a) Show that $(\mathbb{Q}, <)$ is ultrahomogeneous. The same argument should prove that $(\mathbb{R}, <)$ is also ultrahomogeneous.
 - (b) Let $\sigma_{gph} := (E)$ be the signature for graphs and let G be a graph (i.e. a σ_{gph} -structure) that is the undirected³ bi-infinite path, namely, $G := (\mathbb{Z}, E^G)$, where $E^G := \{(x, y) \in \mathbb{Z} : |x y| = 1\}$. Is G ultrahomogeneous? Prove your answer.

- **3.** Let $\mathbf{R} := (\mathbb{R}, 0, 1, +, \cdot)$ with the usual interpretation of the symbols. Let $t_1 := x^2 + 1$, $t_2 := \dot{2} \cdot x$, $\varphi := t_1 = t_2$, $\psi := \exists x \varphi$, $\eta := \exists y \varphi$, where $x^2 := x \cdot x$ and $\dot{2} := (1 + 1)$. Explicitly describe and draw the following functions and relations: $t_1^R(x)$, $t_1^R(x,y)$, $\varphi^R(x)$, ψ^R , $\psi^R(y)$, $\eta^R(x)$, and $\eta^R(x,z)$, where we simply write ψ for the extended formula $\psi()$ with the empty vector of variables.
- 4. (a) A σ -formula is called **existential** (resp. **universal**) if it is of the form $\exists x_1 \exists x_2 ... \exists x_n \psi$ (resp. $\forall x_1 \forall x_2 ... \forall x_n \psi$) for some quantifier free σ -formula ψ . Let **B** be σ -structure, $A \subseteq B$ be a substructure, and $\varphi(\vec{v})$ be an extended σ -formula with $n := |\vec{v}|$. Show that for each $\vec{a} \in A^n$,
 - (i) if φ is quantifier free, then: $A \models \varphi(\vec{a})$ if and only if $B \models \varphi(\vec{a})$;
 - (ii) if φ is existential, then: $A \models \varphi(\vec{a})$ implies $B \models \varphi(\vec{a})$;
 - (iii) if φ is universal, then: $\mathbf{B} \models \varphi(\vec{a})$ implies $\mathbf{A} \models \varphi(\vec{a})$.
 - (b) Find a sentence that is true in $(\mathbb{N}, <)$ but false in $(\mathbb{Z}, <)$, and vice versa.

¹An **automorphism** of a σ -structure A is just an isomorphism from A to itself.

²**Finitely generated** means generated by a finite subset.

³By an **undirected** graph we mean that E is a symmetric relation.

5. [*Optional*] Let $\vec{x_1}, ..., \vec{x_n} \in \mathbb{Q}^m$. Show that $\{\vec{x_1}, ..., \vec{x_n}\}$ is linearly independent over \mathbb{Q} if and only if it is linearly independent over \mathbb{R} .

HINT: Show that linear independence can be expressed by both universal and existential formulas, or by simply a quantifier free formula.

- **6.** Let $\sigma := (f)$ be a signature, where f is a unary function symbol. Find a σ -sentence φ such that there are σ -structures satisfying φ and all σ -structures satisfying φ are infinite.
- 7. Let σ be a signature and $n \in \mathbb{N}$. Explicitly write down a σ -sentence φ_n such that the σ -structures satisfying φ_n are exactly those that have *n* elements.
- 8. Let σ be a *finite* signature and A be a *finite* σ -structure. Show that there is a σ -sentence φ that uniquely determines A up to isomorphism, i.e. for every σ -structure B,

 $B \models \varphi$ if and only if $B \cong A$.

HINT: If n := |A|, then φ is of the form $\exists v_1 \exists v_2 \dots \exists v_n \psi$, just like the formula φ_n from Question 7, but ψ also describes the interpretations of constant, function, and relations symbols in A, e.g. it specifies which relations hold between the elements v_1, v_2, \dots, v_n . Do this first with a finite group (e.g. $\mathbb{Z}/3\mathbb{Z}$) to understand concretely what's going on.