Homework 1
Due: Feb 21 (Wed)

Below let σ denote a signature.

1. Design a signature σ_{vs} suitable for vector spaces over \mathbb{R} and define its interpretation in an arbitrary \mathbb{R}-vector space \boldsymbol{V}.
2. Let $\sigma_{\text {sgp }}:=(\cdot)$ be a signature, where \cdot is a binary operation symbol. A $\sigma_{\text {sgp }}$-structure is called a semigroup if \cdot is interpreted as an associative binary operation, i.e. for all x, y, z,

$$
x \cdot(y \cdot z)=(x \cdot y) \cdot z .
$$

(a) Give an example of a $\sigma_{\text {sgp }}$-structure that is not a semigroup.
(b) Give an example of a semigroup that is not a group (i.e. the interpretation of \cdot is such that there does not exist an inverse or identity).
3. For each of the following examples of σ-structures \boldsymbol{A} and \boldsymbol{B}, determine whether \boldsymbol{A} is a substructure of \boldsymbol{B}.
(a) $\sigma:=(\leqslant)$, where \leqslant is a binary relation symbol, $\boldsymbol{B}:=\left(\mathbb{Z}, \leqslant^{\boldsymbol{B}}\right)$ where $\leqslant^{\boldsymbol{B}}$ is the usual less than or equal to relation on \mathbb{Z}, and $A:=\left(2 \mathbb{Z}^{+}, \leqslant^{A}\right)$ where \mathbb{Z}^{+}is the set of positive integers and \leqslant^{A} is the divisibility relation, i.e. $n \leqslant^{A} m: \Leftrightarrow n \mid m: \Leftrightarrow$ there is $q \in \mathbb{N}^{+}$ such that $m=q n$.
(b) Same as in (a), except that the underlying set of A is $\left\{2^{n}: n \in \mathbb{N}\right\}$ instead of $2 \mathbb{Z}^{+}$.
(c) $\sigma:=\sigma_{\mathrm{rng}}:=(0,1,+,-(), \cdot)$ is the usual signature for rings, $\boldsymbol{B}:=(\mathbb{R}, 0,1,+,-(), \cdot)$ with the usual interpretations, and $A:=(\mathbb{Z}, 0,1,+,-(), \cdot)$ with the usual interpretations.
(d) $\sigma:=(f)$ where f is a unary function symbol, $\boldsymbol{B}:=\left(\mathbb{R}, f^{\boldsymbol{B}}\right)$ where $f^{\boldsymbol{B}}(x):=\frac{4}{\pi} \arctan (x)$, $A:=\left(\{0,1\}, f^{A}\right)$ where $f^{A}(x):=x^{2}$.

Definition. For a σ-structure B and $A \subseteq B$, we say that A supports a substructure of \boldsymbol{B} if there is a substructure $\boldsymbol{A} \subseteq \boldsymbol{B}$ whose universe is A. We also abuse the terminology and simply say that in this case A is a substructure even though it is literally incorrect.
4. Let $\boldsymbol{B}:=(B, \sigma)$ be a σ-structure and $A \subseteq B$. Prove:
(a) The set A supports at most one substructure of B.
(b) The set A supports a substructure of \boldsymbol{B} if and only if A contains all of the constants and is closed under all of the operations of \boldsymbol{B}, i.e. $\boldsymbol{c}^{\boldsymbol{B}} \in A$ for each $c \in \operatorname{Const}(\sigma)$, and $f^{B}\left[A^{n}\right] \subseteq A$ for each $n \in \mathbb{N}$ and $f \in \operatorname{Func}(\sigma)$ of arity n.
(c) Conclude that if σ only has relation symbols, then every subset of B supports a substructure.
5. For each of the structures \boldsymbol{A} below, determine the substructure generated by \emptyset. You do not have to prove your answer.
(a) $A:=(\mathbb{N}, 0,+)$.
(b) $A:=(\mathbb{N}, 0,1,+)$.
(c) $A:=(\mathbb{N},<)$.
(d) $A:=(\mathbb{Q}, 0,1,+,-(), \cdot)$, where -() is the usual additive inverse $x \mapsto-x$.
(e) $A:=\left(\mathbb{Q}, 0,1,+,-(), \cdot,()^{*}\right)$, where ()$^{*}: \mathbb{Q} \rightarrow \mathbb{Q}$ is defined by $x \mapsto x^{-1}$ for $x \neq \emptyset$ and $0 \mapsto 0$.
6. Let $\boldsymbol{A}, \boldsymbol{B}$ be σ-structures and let $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$ be a σ-homomorphism. Prove that the image $h(A)$ is a substructure of \boldsymbol{B}.
7. Let σ be a signature, $\boldsymbol{A}:=(A, \sigma), \boldsymbol{B}:=(B, \sigma)$ be σ-structures, and $h: A \rightarrow B$ be a function.
(a) Prove that h is a σ-isomorphism if and only if h is a bijective σ-homomorphism satisfying $R^{A}(\vec{a}) \Leftrightarrow R^{B}(h(\vec{a}))$ for each n-ary $R \in \operatorname{Rel}(\sigma)$ and $\vec{a} \in A^{n}$. Conclude the analogous statement for σ-embeddings.
(b) Deduce that if σ has no relation symbols, then σ-isomorphism is the same as a bijective σ-homomorphism, and σ-embedding is the same as an injective σ homomorphism.
Remark: That's why this happens with groups, rings, vector spaces, but not with graphs or partial orders.
8. Determine if the following functions are homomorphisms/embeddings/isomorphisms. No justification is necessary. The only acceptable answers are: "not a homomorphism", "homomorphism but not an embedding", "embedding but not an isomorphism", "isomorphism".
If not specified, then the interpretations of the symbols in the signatures are the standard ones.
(i) $\quad n \mapsto 2 n$ from $(\mathbb{N}, 0,1,+)$ to $(\mathbb{N}, 0,1,+)$.
(ii) $n \mapsto 2 n$ from $(\mathbb{N}, 0,+, \cdot)$ to $(\mathbb{N}, 0,+, \cdot)$.
(iii) $n \mapsto 2^{n}$ from $(\mathbb{N}, 0,+)$ to $A:=\left(\mathbb{N}, 0^{A},+^{A}\right)$, where 0^{A} is 1 and $+^{A}$ is the usual multiplication.
(iv) $(x, y) \mapsto x-y$ from $A:=\left(\mathbb{R}^{2}, 0^{A},+^{A}\right)$ to $(\mathbb{R}, 0,+)$, where $0^{A}:=(0,0)$ and $+{ }^{A}$ is the usual coordinate-wise addition of points in \mathbb{R}^{2}, i.e. $\left(a_{0}, b_{0}\right)+\left(a_{1}, b_{1}\right):=\left(a_{0}+a_{1}, b_{0}+b_{1}\right)$.
(v) $n \mapsto-n$ from $(\mathbb{Z}, 0,+)$ to $(\mathbb{Z}, 0,+)$.
(vi) $n \mapsto n$ from $\left(\mathbb{N}^{+}, \leqslant\right)$to $A:=\left(\mathbb{N}^{+}, \leqslant^{A}\right)$, where \leqslant^{A} is the divisibility relation, i.e., $n \leqslant^{A} m$ exactly when n divides m.
(vii) $n \mapsto n$ from $A:=\left(\mathbb{N}^{+}, \leqslant^{A}\right)$ to $\left(\mathbb{N}^{+}, \leqslant\right)$, where \leqslant^{A} is the divisibility relation, i.e., $n \leqslant{ }^{A} m$ exactly when n divides m.

