Mathematical Logic HOMEWORK 1

Due: Feb 21 (Wed)

Below let σ denote a signature.

- 1. Design a signature σ_{vs} suitable for vector spaces over \mathbb{R} and define its interpretation in an arbitrary \mathbb{R} -vector space V.
- 2. Let $\sigma_{sgp} := (\cdot)$ be a signature, where \cdot is a binary operation symbol. A σ_{sgp} -structure is called a **semigroup** if \cdot is interpreted as an *associative* binary operation, i.e. for all *x*, *y*, *z*,

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z.$$

- (a) Give an example of a σ_{sgp} -structure that is **not** a semigroup.
- (b) Give an example of a semigroup that is **not** a group (i.e. the interpretation of \cdot is such that there does not exist an inverse or identity).
- **3.** For each of the following examples of σ -structures *A* and *B*, determine whether *A* is a substructure of *B*.
 - (a) $\sigma := (\leq)$, where \leq is a binary relation symbol, $B := (\mathbb{Z}, \leq^B)$ where \leq^B is the usual less than or equal to relation on \mathbb{Z} , and $A := (2\mathbb{Z}^+, \leq^A)$ where \mathbb{Z}^+ is the set of positive integers and \leq^A is the divisibility relation, i.e. $n \leq^A m :\Leftrightarrow n \mid m :\Leftrightarrow$ there is $q \in \mathbb{N}^+$ such that m = qn.
 - (b) Same as in (a), except that the underlying set of *A* is $\{2^n : n \in \mathbb{N}\}$ instead of $2\mathbb{Z}^+$.
 - (c) $\sigma := \sigma_{rng} := (0, 1, +, -(), \cdot)$ is the usual signature for rings, $B := (\mathbb{R}, 0, 1, +, -(), \cdot)$ with the usual interpretations, and $A := (\mathbb{Z}, 0, 1, +, -(), \cdot)$ with the usual interpretations.
 - (d) $\sigma := (f)$ where f is a unary function symbol, $B := (\mathbb{R}, f^B)$ where $f^B(x) := \frac{4}{\pi} \arctan(x)$, $A := (\{0, 1\}, f^A)$ where $f^A(x) := x^2$.

Definition. For a σ -structure B and $A \subseteq B$, we say that A **supports a substructure** of B if there is a substructure $A \subseteq B$ whose universe is A. We also abuse the terminology and simply say that in this case A is a substructure even though it is literally incorrect.

- **4.** Let $\mathbf{B} := (B, \sigma)$ be a σ -structure and $A \subseteq B$. Prove:
 - (a) The set *A* supports at most one substructure of *B*.
 - (b) The set A supports a substructure of B if and only if A contains all of the constants and is closed under all of the operations of B, i.e. c^B ∈ A for each c ∈ Const(σ), and f^B[Aⁿ] ⊆ A for each n ∈ N and f ∈ Func(σ) of arity n.
 - (c) Conclude that if σ only has relation symbols, then every subset of *B* supports a substructure.

- **5.** For each of the structures A below, determine the substructure generated by \emptyset . You do not have to prove your answer.
 - (a) $A := (\mathbb{N}, 0, +).$
 - (b) $A := (\mathbb{N}, 0, 1, +).$
 - (c) $A := (\mathbb{N}, <).$
 - (d) $A := (\mathbb{Q}, 0, 1, +, -(), \cdot)$, where -() is the usual additive inverse $x \mapsto -x$.
 - (e) $A := (\mathbb{Q}, 0, 1, +, -(), \cdot, ()^*)$, where $()^* : \mathbb{Q} \to \mathbb{Q}$ is defined by $x \mapsto x^{-1}$ for $x \neq \emptyset$ and $0 \mapsto 0$.
- 6. Let A, B be σ -structures and let $h : A \to B$ be a σ -homomorphism. Prove that the image h(A) is a substructure of B.
- 7. Let σ be a signature, $A := (A, \sigma)$, $B := (B, \sigma)$ be σ -structures, and $h : A \to B$ be a function.
 - (a) Prove that *h* is a σ -isomorphism if and only if *h* is a bijective σ -homomorphism satisfying $R^{A}(\vec{a}) \Leftrightarrow R^{B}(h(\vec{a}))$ for each *n*-ary $R \in \text{Rel}(\sigma)$ and $\vec{a} \in A^{n}$. Conclude the analogous statement for σ -embeddings.
 - (b) Deduce that if σ has no relation symbols, then σ -isomorphism is the same as a bijective σ -homomorphism, and σ -embedding is the same as an injective σ -homomorphism.

REMARK: That's why this happens with groups, rings, vector spaces, but not with graphs or partial orders.

8. Determine if the following functions are homomorphisms/embeddings/isomorphisms. No justification is necessary. The only acceptable answers are: "not a homomorphism", "homomorphism but not an embedding", "embedding but not an isomorphism", "isomorphism".

If not specified, then the interpretations of the symbols in the signatures are the standard ones.

- (i) $n \mapsto 2n$ from $(\mathbb{N}, 0, 1, +)$ to $(\mathbb{N}, 0, 1, +)$.
- (ii) $n \mapsto 2n$ from $(\mathbb{N}, 0, +, \cdot)$ to $(\mathbb{N}, 0, +, \cdot)$.
- (iii) $n \mapsto 2^n$ from $(\mathbb{N}, 0, +)$ to $A := (\mathbb{N}, 0^A, +^A)$, where 0^A is 1 and $+^A$ is the usual multiplication.
- (iv) $(x, y) \mapsto x y$ from $A := (\mathbb{R}^2, 0^A, +^A)$ to $(\mathbb{R}, 0, +)$, where $0^A := (0, 0)$ and $+^A$ is the usual coordinate-wise addition of points in \mathbb{R}^2 , i.e. $(a_0, b_0) + (a_1, b_1) := (a_0 + a_1, b_0 + b_1)$.
- (v) $n \mapsto -n$ from $(\mathbb{Z}, 0, +)$ to $(\mathbb{Z}, 0, +)$.
- (vi) $n \mapsto n$ from (\mathbb{N}^+, \leq) to $A := (\mathbb{N}^+, \leq^A)$, where \leq^A is the divisibility relation, i.e., $n \leq^A m$ exactly when *n* divides *m*.
- (vii) $n \mapsto n$ from $A := (\mathbb{N}^+, \leq^A)$ to (\mathbb{N}^+, \leq) , where \leq^A is the divisibility relation, i.e., $n \leq^A m$ exactly when *n* divides *m*.