Metric Spaces and Topology

Homework 9

Due: Apr 25 (Tue)

Definition. In a topological space *X*, we say that a sequence $(x_n) \subseteq X$ **converges** to $x \in X$ if for each open $U \ni x$, we have $\forall^{\infty} n \ x_n \in U$. In this case, we also say that *x* is a **limit** of (x_n) .

- 1. Prove that if a topological space is Hausdorff, limits of sequences are unique.
- 2. Let X be an infinite set and let \mathcal{T} be the cofinite topology, i.e. a set is open if its complement is finite.
 - (a) Prove that this topology is T_1 but not Hausdorff because any two nonempty open sets intersect.
 - (b) Let $(x_n) \subseteq X$ be a sequence of pairwise distinct elements. Prove that every point $x \in X$ is a limit of (x_n) . In particular, limits are nonunique.
 - (c) Prove that a subset $D \subseteq X$ is dense if and only if it is infinite.
- **3.** [*Optional*] **Zariski topology.** Let \mathbb{F} be an infinite field (e.g. $\mathbb{F} := \mathbb{Q}, \mathbb{R}, \mathbb{C}$), fix $n \in \mathbb{N}^+$, and consider the Zariski topology on \mathbb{F}^n . Prove:
 - (a) The Zariski topology on \mathbb{F}^n is indeed a topology, namely, finite unions of Zaristki closed sets are Zariski closed.
 - (b) The intersection of two nonempty Zariski open sets is nonempty. Equivalently, the union of two Zariski closed proper subsets of \mathbb{F}^n is not the whole \mathbb{F}^n . Conclude that the Zariski topology is not Hausdorff, although it is T_1 .
- 4. Criterion for a prebasis to be a basis. For a set *X*, a collection $\mathcal{B} \subseteq \mathcal{P}(X)$ is a basis for the topology it generates if and only if \mathcal{B} covers *X* (i.e. $X = \bigcup \mathcal{B}$) and for each $U, V \in \mathcal{B}$ and $x \in U \cap V$, there is $W \in \mathcal{B}$ with $x \in W \subseteq U \cap V$.
- 5. For the space $A^{\mathbb{N}}$ with the usual metric *d*, prove that the sets $[i \mapsto a] := \{x \in A^{\mathbb{N}} : x(i) = a\}$, $i \in \mathbb{N}$ and $a \in A$, form a prebasis for the topology induced by the metric *d*.
- **6.** Prove that a topological space is T_1 if and only if every singleton is closed.
- 7. Let X be a normal (i.e. T_4) topological space and let $U, V \subseteq X$ be open. Prove that if $U \subseteq_c V$, then there is an open set $W \subseteq X$ such that $U \subseteq_c W \subseteq_c V$. (Recall that the notation $A \subseteq_c B$ means $\overline{A} \subseteq B$.)
- **8.** Furstenberg topology on \mathbb{Z} . Recall that the Furstenberg topology on \mathbb{Z} is that generated by the cosets $a + b\mathbb{Z}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$.
 - (a) Prove that the cosets as above, form a basis.

- (b) [*Optional*] For $z \in \mathbb{Z}$, let $||z|| := \sum_{k \nmid z, k \ge 1} 2^{-k}$. Prove that this satisfies the triangle inequality $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{Z}$ (and hence $||\cdot||$ is a norm). Deduce that d(x, y) := ||x y|| is a metric on \mathbb{Z} .
- (c) [*Optional*] Prove that this metric d induces the Furstenberg topology on \mathbb{Z} .

Remark: Thus, \mathbb{Z} with this topology is metrizable, zero-dimensional, perfect, and countable. Such a space is *unique* up to homeomorphism (by Sierpiński's theorem). In particular, \mathbb{Z} with the Furstenberg topology is homeomorphic to \mathbb{Q} (with the relative topology of \mathbb{R}).