Metric Spaces and Topology HOMEWORK 8 Due: Apr 18 (Tue)

1. Prove the following theorem assuming X is a 2^{nd} countable topological space, however the theorem holds for all topological spaces.

Theorem (Banach category). Let X be a topological space. If $B \subseteq X$ is locally meagre¹, then it is meagre.

- **2.** Let *X* be a topological space. For $B \subseteq X$, define the set U(B) as the union of all open sets $U \subseteq X$ such that $U \Vdash B$. Prove:
 - (a) $U(B) \Vdash B$.
 - (b) *B* is Baire measurable if and only if $B \setminus U(B)$ is meagre if and only if $B =_* U(B)$.
 - (c) If X is Baire and B is Baire measurable, then U(B) is the unique regular open² set that is =_{*}-equivalent to B.

REMARK: For a Baire measurable $B \subseteq X$, the set U(B) is referred to as the **canonical** representative of the =*-class of *B*.

- **3.** [*Optional*] How about my grad school favourite: Clocks and Clouds by György Ligeti (conducted by Esa-Pekka Salonen)? I think this piece conveys perfectly Ligeti's point that music doesn't have to tell a story, it can just describe a state.
- **4.** Let $T: X \to X$ be a transformation of a set *X*. Prove that a set $Y \subseteq X$ is E_T -invariant if and only if $Y = T^{-1}(Y)$.
- 5. For $k \in \mathbb{N}$ or $k = \mathbb{N}$, recall the (left) shift map $\sigma : k^{\mathbb{N}} \to k^{\mathbb{N}}$ given by $(x_n)_{n \in \mathbb{N}} \mapsto (x_{n+1})_{n \in \mathbb{N}}$.
 - (a) Prove that the **backward orbit** $\sigma^{-\mathbb{N}}(x) := \bigcup_{n \in \mathbb{N}} \sigma^{-n}(x)$ of each point $x \in X$ is dense.
 - (b) Conclude that for any nonempty open sets $U, V \subseteq k^{\mathbb{N}}$ there is $n \in \mathbb{N}$ such that $\sigma^{-n}(U) \cap V$ is nonempty open.
 - (c) Prove that the σ -preimage of an open dense set is open dense. Conclude that the σ -preimage of a meager set is meager.
 - (d) Conclude that σ is generically ergodic.
 - (e) Deduce that the graph G_{σ} does not admit a Baire measurable 2-colouring.
 - (f) Prove that in a generic infinite word $x \in k^{<\mathbb{N}}$ every finite word $w \in k^{<\mathbb{N}}$ appears infinitely many times. Conclude that for a generic $x \in X$, the **forward orbit** $\sigma^{\mathbb{N}}(x) := \{\sigma^n(x) : n \in \mathbb{N}\}$ is dense. (This part is not related to the previous parts.)

¹A set $B \subseteq X$ is **locally meagre** if each point of *B* admits an open neighbourhood *U* such that $B \cap U$ is meagre.

²A set *U* is called **regular open** if $Int(\overline{U}) = U$.

- **6.** [*Optional*] Let Γ be a group that acts on a Polish space X by homeomorphisms³. The orbit of $x \in X$ is the set $[x]_{\Gamma} := \Gamma x := \{\gamma x : \gamma \in \Gamma\}$ and they form the classes of the **orbit equivalence relation** E_{Γ} . We say that the action $\Gamma \curvearrowright X$ is **generically ergodic** if so is E_{Γ} . Prove that the following are equivalent.
 - (1) $\Gamma \curvearrowright X$ is generically ergodic.
 - (2) Every E_{Γ} -invariant nonempty open set is dense.
 - (3) For comeagerly many $x \in X$, the orbit $[x]_{\Gamma}$ is dense.
 - (4) There is a dense orbit.
 - (5) For every nonempty open sets $U, V \subseteq X$, there is $\gamma \in \Gamma$ such that $(\gamma U) \cap V \neq \emptyset$.

HINT: For (2) \Rightarrow (3), take a countable basis $\{U_n\}_{n \in \mathbb{N}}$ and consider $\bigcap_n [U_n]_{\Gamma}$, where $[U]_{\Gamma} := \Gamma U := \bigcup_{\gamma \in \Gamma} \gamma U$.

7. For $k \in \mathbb{N}$ or $k = \mathbb{N}$, define the (left) shift map $\sigma : k^{\mathbb{Z}} \to k^{\mathbb{Z}}$ given by $(x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$. Prove that a generic orbit is dense and hence σ is generically ergodic (by the previous question). Deduce that G_{σ} does not admit a Baire measurable 2-colouring.

REMARK: The map σ induces the shift action of \mathbb{Z} on $k^{\mathbb{Z}}$ by $m \cdot (x_n)_{n \in \mathbb{Z}} := (x_{n+m})_{n \in \mathbb{Z}}$ for $m \in \mathbb{Z}$. More generally, every countable group Γ acts on k^{Γ} by shift: $\gamma \cdot (x_{\delta})_{\delta \in \Gamma} := (x_{\delta \gamma})_{\delta \in \Gamma}$. One can again prove that a generic orbit of this action is dense and hence the action is generically ergodic.

- 8. Prove that in the Hamming graph \mathcal{H} on $2^{\mathbb{N}}$, the set of neighbours $N_{\mathcal{H}}(M)$ of a meagre set $M \subseteq 2^{\mathbb{N}}$ is meagre.
- 9. [Optional] Prove:
 - (a) \mathcal{G}_0 is acyclic.
 - (b) \mathcal{G}_0 spans the Hamming graph, i.e. the \mathcal{G}_0 -connectedness relation is the same as eventual equality \mathbb{E}_0 .
 - (c) \mathcal{G}_0 does not admit a Baire measurable countable colouring.

Rемаrk: Try to think what would happen in the argument if Baire measurability was replaced by measurability⁴ instead. The 100% lemma becomes 99% and the argument breaks down. Indeed, it is a theorem of Ben Miller that \mathcal{G}_0 admits a measurable 3-colouring!

³You can think of Γ as a set of homoeomorphisms $X \to X$ that contains the identity automorphism and is closed under composition and inverses.

⁴The most natural (Haar) measure on $2^{\mathbb{N}}$ is the so-called fair coin flip measure μ , which assigns to each cylinder [w] measure $2^{-|w|}$.