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Metric Spaces and Topology Homework 7 Due: Mar 28 (Tue)

1. Let X be a second-countable metric space (or just a topological space).

(a) Encode each open subset of X as a subset of N, i.e. inject the collection of open
sets into P(N). Deduce that there are at most continuum many open/closed sets.

(b) [Optional] Let (Λ,<) be a well-order and let (Aλ)λ∈Λ be a strictly monotone (in-
creasing or decreasing) sequence of open subsets of X. Prove that Λ is countable.
Deduce the same statement but with “closed” instead of “open”.

2. [Optional] Construction of a Bernstein set. Let X be a Polish space, say X ..= R. We use
AC to build a Bernstein set, i.e. a subset B ⊆ X such that both B and Bc are of cardinality
continuum but do not contain a homeomorphic copy of 2N. Here are the steps:

(i) Due to the compactness of 2N, the image of 2N under any continuous embedding
is a perfect closed subset of X. Thus it is enough to build a set B ⊆ X that does not
contain any nonempty perfect closed subset.

(ii) By Problem 1(a), there are at most continuum many closed perfect subsets of X,
so by AC, we can well-order them; more precisely, letting Λ be any continuum
set, e.g. 2N, AC gives (Zermelo’s theorem) a well-ordering of (Λ,<) such that for
any β ∈Λ, the set Λ<β

..= {α ∈Λ} : α < β has cardinality less than continuum, and a
sequence (Pλ)λ∈Λ enumerating all nonempty perfect closed subsets of X.

(iii) Using transfinite recursion, we build a sequence of pairs of points (xλ, yλ)λ∈Λ as
follows: assuming (xλ, yα)α<β is built already for some β ∈ Λ, we define choose
(using AC again) distinct points xβ , yβ from the set Pβ \ {xα, yα : α < β}. We can do
so because by the Perfect Set Theorem, the set Pβ is continuum, and hence so is
Pβ \ {xα, yα : α < β} because Λ<β is less than continuum.

(iv) The set B ..= {xλ : λ ∈Λ} is continuum and does not contain a nonempty perfect
closed set because it is missing at least one point yλ from Pλ for each λ ∈Λ.

3. In the proof of the Perfect Set Theorem, we defined a map f : 2N ↪→ X associated to the
Cantor scheme. Prove that f −1 : f (2N) ↪→ 2N is continuous.

4. Let X be a perfect metric space (or just a topological space).

(a) Prove that open subsets of X are perfect.

(b) Prove that if Y ⊆ X is perfect, then so is Y . In particular, the closure of open sets
(e.g. open balls) is perfect.

Caution: The closed balls of positive radius may not be perfect, as shown by the
example in Lecture 12.

1



5. Prove that for any Polish space X, the partition X = P ⊔U into a perfect closed subset
P and a countable open set U is unique. This P is called the perfect kernel of X.

6.∗ Show that [0,1] does not admit a nontrivial1 countable partition into closed intervals.

7. Cantor–Bendixson derivative and rank. Let X be a Polish space. The Cantor–
Bendixson derivative of X, is the closed set X ′ resulting from removing the isolated
points of X from X. Note that X ′ is itself a Polish space and it might have isolated
points, so it makes sense to take its derivative again. By (transfinite) recursion, we
define the iterated Cantor–Bendixson derivatives Xα, where α is an ordinal (think
natural number), as follows:

X0 ..= X,

Xα+1 ..= (Xα)′,

Xλ ..=
⋂
α<λ

Xα, if λ is a limit.

Thus (Xα) is a decreasing transfinite sequence of closed subsets of X.

(a) [Optional] Prove that the iterated derivatives stabilize at a countable ordinal, i.e.
there is a countable ordinal β such that Xβ = Xβ+1. The least such β is called
the Cantor–Bendixson rank of X. Prove that Xβ is the perfect kernel of X (this
provides a more refined proof of the Cantor–Bendixson theorem).

(b) For each n ∈N, build a closed subset of 2N of Cantor–Bendixson rank n. Further-
more, build a (necessarily non-closed) subset of 2N of rank ω ..= N. Now build a
closed subset of 2N of rank ω+ 1.

8. Prove that in any metric (or topological) space, finite unions of nowhere dense sets are
nowhere dense. Thus, nowhere dense sets form an ideal.

9. Let X be a topological space, Y ⊆ X be a subspace and A ⊆ Y . Prove:

(a) If A is nowhere dense (resp. meager) in Y , it is still nowhere dense (resp. meager)
in X.

(b) If Y is open, then A is nowhere dense (resp. meager) in Y if and only if it is
nowhere dense (resp. meager) in X.

10. Let G be a group equipped with a complete metric which makes the group multi-
plication operation (g,h) 7→ g · h : G ×G→ G and inverse operation g 7→ g−1 : G→ G
continuous. Prove:

(a) The closure of a subgroup is a subgroup.

(b) Every Gδ subgroup is closed.

1A partition P of a set X is trivial if P = {X}.
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Definition. Let X be a Baire space and let P be a property of points in X. We say that a
generic point in X satisfies P (or P holds generically) if the set of x ∈ X satisfying P is
comeagre.

11. [Optional] Recall that C([0,1]) is a complete metric space with the uniform metric.
Follow the steps below to prove that a generic function in C([0,1]) is nowhere differen-
tiable.

(i) Prove that given m ∈N, each function f ∈ C([0,1]) can be approximated (in the
uniform metric) by a piecewise linear function g ∈ C([0,1]), whose linear pieces
(finitely many) have slope ±M, for some M ⩾m.

(ii) For each n ⩾ 1, let Cn be the set of all functions f ∈ C([0,1]), for which there is
x0 ∈ [0,1] (depending on f ) such that |f (x)− f (x0)| ⩽ n|x−x0| for all x ∈ [0,1]. Show
that Cn is nowhere dense using the fact that if g is as in step (i) with m = 2n, then
some open neighborhood of g is disjoint from Cn.

12. [Optional] Prove that NN is homeomorphic to R \Q.

Hint: Build a homeomorphism R \Q→N
N using continued fraction expansion.
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