Metric Spaces and Topology

Homework 7

- **1.** Let *X* be a second-countable metric space (or just a topological space).
 - (a) Encode each open subset of X as a subset of \mathbb{N} , i.e. inject the collection of open sets into $\mathscr{P}(\mathbb{N})$. Deduce that there are at most continuum many open/closed sets.
 - (b) [Optional] Let (Λ, <) be a well-order and let (A_λ)_{λ∈Λ} be a strictly monotone (increasing or decreasing) sequence of open subsets of X. Prove that Λ is countable. Deduce the same statement but with "closed" instead of "open".
- **2.** [*Optional*] **Construction of a Bernstein set.** Let *X* be a Polish space, say $X := \mathbb{R}$. We use AC to build a Bernstein set, i.e. a subset $B \subseteq X$ such that both *B* and B^c are of cardinality continuum but do not contain a homeomorphic copy of $2^{\mathbb{N}}$. Here are the steps:
 - (i) Due to the compactness of $2^{\mathbb{N}}$, the image of $2^{\mathbb{N}}$ under any continuous embedding is a perfect closed subset of *X*. Thus it is enough to build a set $B \subseteq X$ that does not contain any nonempty perfect closed subset.
 - (ii) By Problem 1(a), there are at most continuum many closed perfect subsets of *X*, so by AC, we can well-order them; more precisely, letting Λ be any continuum set, e.g. 2^N, AC gives (Zermelo's theorem) a well-ordering of (Λ,<) such that for any β ∈ Λ, the set Λ_{<β} := {α ∈ Λ} : α < β has cardinality *less than continuum*, and a sequence (P_λ)_{λ∈Λ} enumerating all nonempty perfect closed subsets of *X*.
 - (iii) Using transfinite recursion, we build a sequence of pairs of points (x_λ, y_λ)_{λ∈Λ} as follows: assuming (x_λ, y_α)_{α<β} is built already for some β ∈ Λ, we define choose (using AC again) distinct points x_β, y_β from the set P_β \ {x_α, y_α : α < β}. We can do so because by the Perfect Set Theorem, the set P_β is continuum, and hence so is P_β \ {x_α, y_α : α < β} because Λ_{<β} is less than continuum.
 - (iv) The set $B := \{x_{\lambda} : \lambda \in \Lambda\}$ is continuum and does not contain a nonempty perfect closed set because it is missing at least one point y_{λ} from P_{λ} for each $\lambda \in \Lambda$.
- **3.** In the proof of the Perfect Set Theorem, we defined a map $f : 2^{\mathbb{N}} \hookrightarrow X$ associated to the Cantor scheme. Prove that $f^{-1} : f(2^{\mathbb{N}}) \hookrightarrow 2^{\mathbb{N}}$ is continuous.
- 4. Let *X* be a perfect metric space (or just a topological space).
 - (a) Prove that open subsets of *X* are perfect.
 - (b) Prove that if $Y \subseteq X$ is perfect, then so is \overline{Y} . In particular, the closure of open sets (e.g. open balls) is perfect.

CAUTION: The closed balls of positive radius may not be perfect, as shown by the example in Lecture 12.

- 5. Prove that for any Polish space X, the partition $X = P \sqcup U$ into a perfect closed subset *P* and a countable open set *U* is unique. This *P* is called the **perfect kernel** of X.
- **6.*** Show that [0,1] does not admit a nontrivial¹ countable partition into closed intervals.
- 7. Cantor-Bendixson derivative and rank. Let X be a Polish space. The Cantor-Bendixson derivative of X, is the *closed* set X' resulting from removing the isolated points of X from X. Note that X' is itself a Polish space and it might have isolated points, so it makes sense to take its derivative again. By (transfinite) recursion, we define the iterated Cantor-Bendixson derivatives X^{α} , where α is an ordinal (think natural number), as follows:

$$X^{0} := X,$$

$$X^{\alpha+1} := (X^{\alpha})',$$

$$X^{\lambda} := \bigcap_{\alpha < \lambda} X^{\alpha}, \text{ if } \lambda \text{ is a limit.}$$

Thus (X^{α}) is a decreasing transfinite sequence of closed subsets of *X*.

- (a) [*Optional*] Prove that the iterated derivatives stabilize at a countable ordinal, i.e. there is a countable ordinal β such that $X^{\beta} = X^{\beta+1}$. The least such β is called the **Cantor–Bendixson rank** of *X*. Prove that X^{β} is the perfect kernel of *X* (this provides a more refined proof of the Cantor–Bendixson theorem).
- (b) For each $n \in \mathbb{N}$, build a closed subset of $2^{\mathbb{N}}$ of Cantor–Bendixson rank n. Furthermore, build a (necessarily non-closed) subset of $2^{\mathbb{N}}$ of rank $\omega := \mathbb{N}$. Now build a closed subset of $2^{\mathbb{N}}$ of rank $\omega + 1$.
- 8. Prove that in any metric (or topological) space, finite unions of nowhere dense sets are nowhere dense. Thus, nowhere dense sets form an ideal.
- **9.** Let *X* be a topological space, $Y \subseteq X$ be a subspace and $A \subseteq Y$. Prove:
 - (a) If *A* is nowhere dense (resp. meager) in *Y*, it is still nowhere dense (resp. meager) in *X*.
 - (b) If *Y* is open, then *A* is nowhere dense (resp. meager) in *Y* if and only if it is nowhere dense (resp. meager) in *X*.
- **10.** Let *G* be a group equipped with a complete metric which makes the group multiplication operation $(g,h) \mapsto g \cdot h : G \times G \to G$ and inverse operation $g \mapsto g^{-1} : G \to G$ continuous. Prove:
 - (a) The closure of a subgroup is a subgroup.
 - (b) Every G_{δ} subgroup is closed.

¹A partition \mathcal{P} of a set *X* is *trivial* if $\mathcal{P} = \{X\}$.

Definition. Let *X* be a Baire space and let *P* be a property of points in *X*. We say that a **generic point in** *X* **satisfies** *P* (or *P* **holds generically**) if the set of $x \in X$ satisfying *P* is comeagre.

- **11.** [*Optional*] Recall that C([0,1]) is a complete metric space with the uniform metric. Follow the steps below to prove that a generic function in C([0,1]) is nowhere differentiable.
 - (i) Prove that given $m \in \mathbb{N}$, each function $f \in C([0,1])$ can be approximated (in the uniform metric) by a piecewise linear function $g \in C([0,1])$, whose linear pieces (finitely many) have slope $\pm M$, for some $M \ge m$.
 - (ii) For each $n \ge 1$, let C_n be the set of all functions $f \in C([0,1])$, for which there is $x_0 \in [0,1]$ (depending on f) such that $|f(x) f(x_0)| \le n|x x_0|$ for all $x \in [0,1]$. Show that C_n is nowhere dense using the fact that if g is as in step (i) with m = 2n, then some open neighborhood of g is disjoint from C_n .
- **12.** [*Optional*] Prove that $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R} \setminus \mathbb{Q}$.

Німт: Build a homeomorphism $\mathbb{R} \setminus \mathbb{Q} \to \mathbb{N}^{\mathbb{N}}$ using continued fraction expansion.