- **1.** In the proof of the uniqueness of completion of a metric space (X, d), we defined a function f between two completions \hat{X} and \check{X} . Prove:
 - (a) f is well-defined, i.e. does not depend on the choice of a Cauchy sequence approximating a given point $\hat{x} \in \hat{X}$.
 - (b) *f* is a bijective isometry.
- 2. Let (X, d) be a metric space. Prove that for any Cauchy sequences $(x_n), (x'_n) \subseteq X$, the sequence of distances $(d(x_n, x'_n)) \subseteq \mathbb{R}$ is Cauchy (with respect to the usual metric on \mathbb{R}).

Definition. We call sequences $(x_n), (x'_n)$ in a metric space (X, d) equivalent, and denote by $(x_n) \sim_d (x'_n)$, if $\lim_n d(x_n, x'_n) = 0$.

- **3.** Let (X, d) be a metric space and let $(x^k)_{k \in \mathbb{N}^+}$ be a Cauchy sequence in $\hat{X} := \text{Cauchy}(X) / \sim_d$ with respect to the metric \hat{d} defined in class. In particular, each x^k is a \sim_d -equivalence class of a Cauchy sequence $(x_n^k)_{n \in \mathbb{N}^+}$ in X.
 - (a) Prove that there is an increasing sequence $(n_k) \subseteq \mathbb{N}$ such that for each $k \in \mathbb{N}^+$,
 - (i) diam $\{x_{n_k}^k, x_{n_k+1}^k, x_{n_k+2}^k, \ldots\} < \frac{1}{k};$

(ii)
$$d(x_{n_{\ell}}^k, x_{n_{\ell}}^{\ell}) < \frac{1}{k}$$
 for all $\ell \ge k$.

- (b) Conclude that each sequence $(x_n^k)_{n \in \mathbb{N}^+}$ has an equivalent sequence $(\tilde{x}_n^k)_{n \in \mathbb{N}^+}$ such that for each $k \in \mathbb{N}^+$,
 - (i) diam $\left\{\tilde{x}_k^k, \tilde{x}_{k+1}^k, \tilde{x}_{k+2}^k, \ldots\right\} < \frac{1}{k};$
 - (ii) $d(\tilde{x}_{\ell}^k, \tilde{x}_{\ell}^{\ell}) < \frac{1}{k}$ for all $\ell \ge k$.
- **4.** For metric spaces $(X, d_X), (Y, d_Y)$, a function $f : X \to Y$, and a point $x_0 \in X$, prove that the following definitions of continuity at x_0 are equivalent:
 - (1) For every neighbourhood V of $f(x_0)$, the preimage $f^{-1}(V)$ is a neighbourhood of x_0 .
 - (2) For every neighbourhood *V* of $f(x_0)$, there is a neighbourhood *U* of x_0 such that $f(U) \subseteq V$.
 - (3) For every $\varepsilon > 0$ there is $\delta > 0$ such that for all $x \in X$: $d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \varepsilon$.
- 5. Prove:

- (a) The function $f : 2^{\mathbb{N}} \to [0, 1]$ defined as follows is a continuous surjection: $x := (x_n) \mapsto$ the real with binary representation $0.x_0x_1x_2...$
- (b) The function $g: 2^{\mathbb{N}} \to \mathcal{C} \subseteq [0,1]$ defined as follows is a homeomorphism: $x := (x_n) \mapsto$ the real with ternary representation $0.\tilde{x}_0 \tilde{x}_1 \tilde{x}_2 \dots$, where $\tilde{x}_n := 2x_n$.

HINT: For continuity in parts (a) and (b), it is enough (why?) to consider preimages of intervals with endpoints having finite binary and ternary representation, respectively.

- **6.** Prove carefully that Thomae's function is continuous at every irrational in (0,1).
- 7. Let $(X, d_X), (Y, d_Y)$ be metric spaces and $f : X \to Y$ be an arbitrary function. Let Cont(f) denote the set of **continuity points** of f, namely those points in X at which f is continuous. Prove that Cont(f) is G_{δ} (i.e. countable intersection of open sets).

HINT: Consider the oscilation function $\operatorname{osc}_f : X \to \mathbb{R}$ defined by $x \mapsto \inf_{\delta > 0} \operatorname{diam} f(B_{\delta}(x_0))$.

8. [*Optional*] The graph of a function $f : X \to Y$ is the set

 $graph(f) := \{(x, y) \in X \times Y : f(x) = y\}.$

Prove that the graph of a continuous function $f : (X, d_X) \to (Y, d_Y)$ is a closed subset of $X \times Y$, where $X \times Y$ is equipped with the d_{∞} metric, i.e. $d_{\infty}((x, y), (x', y')) := \max\{d_X(x, x'), d_Y(y, y')\}$. Try to give a purely topological proof without using metric or sequences.

- **9.*** [*Optional*] A metric space (X, d) is called **completely metrizable** if it admits an equivalent metric \tilde{d} which is complete. Suppose that (X, d) is a complete metric space. Prove that a subspace $Y \subseteq X$ is completely metrizable if and only if it is G_{δ} .
- 10. [Optional] Listen to Erik Satie's "Pièces Froides: Danses de travers." (all 3 parts) performed by Alexander Tharaud [spotify link], [youtube link by a different pianist, not as good]. I don't understand how this was written in 1897. If I heard that Brad Mehldau or Tigran Hamasyan wrote this yesterday, I wouldn't think twice about it.