Metric Spaces and Topology HOMEWORK 3

Due: Feb 21 (Tue)

- **1.** Let (X, d) be a metric space and $Y \subseteq X$. The **boundary** of *Y* is the set ∂Y of all points $x \in X$ whose every neighbourhood intersects both *Y* and *Y^c*.
 - (a) Prove that $\partial Y = \overline{Y} \setminus \text{Int}(Y)$ and conclude that ∂Y is closed.
 - (b) Prove that *Y* is closed if and only if $Y \supseteq \partial Y$.
 - (c) Determine the boundary of \mathbb{Q} in the metric space \mathbb{R} with the usual metric.
- **2.** Let (X, d) be a metric space and $Y \subseteq X$. Prove that diam $(Y) = \text{diam}(\overline{Y})$.
- **3.** Let (X,d) be a metric space and $(x_n) \subseteq X$. A point $x \in X$ is called a **subsequential limit** of (x_n) if there is a subsequence of (x_n) converging to x. Prove that the set of all subsequential limits of (x_n) is closed.

HINT: Let (y_k) be a sequence of subsequential limits and assume that $y_k \to y$. Let $(x_{n_{k\ell}})_{\ell \in \mathbb{N}}$ be a subsequence converging to y_k . The indices $(n_{k\ell})$ form an infinite matrix (*k* is the index of the row and ℓ is that of the column). Taking an appropriate "quasidiagonal" of this matrix, we obtain a subsequence converging to y.

- **4.** (a) Prove that Cauchy sequences are the same with respect to bi-Lipschitz equivalent metrics on a set *X*.
 - (b) However, the Cauchy property is **not** preserved under equivalence of metrics. Indeed, construct a metric d' equivalent to the usual metric d on [0, 1) such that d' has "fewer" Cauchy sequences than d, i.e. the d'-Cauchy sequences form a strict subset of the d-Cauchy sequences. Moreover, make sure that d' is a complete metric on [0, 1), i.e. every d'-Cauchy sequence converges in [0, 1).
 - (c) Nevertheless, show that any metric *d* on a set *X* has the same Cauchy sequences as its (equivalent) 1-bounded version $d' := \min\{d, 1\}$.
- **5.** Babylonian method of finding square roots. The goal is to build a sequence of rationals that approximates \sqrt{a} , for some fixed positive $a \in \mathbb{Q}$. Take any $x_0 > 0$, and define the rest of the sequence recursively by

$$x_{n+1} := \frac{1}{2} (x_n + \frac{a}{x_n}). \tag{*}$$

Prove:

- (a) If (x_n) converges in \mathbb{R} , then its limit is \sqrt{a} .
- (b) $x_n^2 \ge a$ for all $n \ge 1$.

HINT: Rewrite equation (*) as a quadratic equation in variable x_n and consider its discriminant.

- (c) The sequence (x_n) is decreasing.
- (d) Conclude that (x_n) converges to \sqrt{a} in \mathbb{R} .
- **6.** Let $(X_n, d_n)_{n=1}^{\infty}$ be a sequence of metric spaces and assume that each $d_n \leq 1$. Let $X := \prod_{n \in \mathbb{N}} X_n$ be the Cartesian product of the sets X_n and define $d_{\infty} : X \times X \to [0, 1]$ by

$$d_{\infty}(x,y) := \sum_{n=1}^{0} 2^{-n} d_n \Big(x(n), y(n) \Big)$$

for $x, y \in X$.

- (a) Prove that d_{∞} is a metric on *X*. We call this the **infinite product metric**.
- (b) Prove that if each d_n is complete, then so is d_{∞} .
- (c) For any set A, taking $X_n := A$ and d_n the discrete metric on A, so $X = A^{\mathbb{N}}$. Prove that d_{∞} is bi-Lipschitz equivalent to the usual metric on $A^{\mathbb{N}}$. Conclude that $A^{\mathbb{N}}$ with the usual metric is a complete metric space. (We will give a much faster direct proof of this in class on Tuesday.)
- 7. Reward yourself with Steve Reich's Electric Counterpoint by Mat Bergström (or Pat Metheny, although he plays it a bit too fast for me). This is one of the truly revolutionary pieces of music.