1. Let (X, d) be a metric space and $Y \subseteq X$. The boundary of Y is the set ∂Y of all points $x \in X$ whose every neighbourhood intersects both Y and Y^{c}.
(a) Prove that $\partial Y=\bar{Y} \backslash \operatorname{Int}(Y)$ and conclude that ∂Y is closed.
(b) Prove that Y is closed if and only if $Y \supseteq \partial Y$.
(c) Determine the boundary of \mathbb{Q} in the metric space \mathbb{R} with the usual metric.
2. Let (X, d) be a metric space and $Y \subseteq X$. Prove that $\operatorname{diam}(Y)=\operatorname{diam}(\bar{Y})$.
3. Let (X, d) be a metric space and $\left(x_{n}\right) \subseteq X$. A point $x \in X$ is called a subsequential limit of $\left(x_{n}\right)$ if there is a subsequence of $\left(x_{n}\right)$ converging to x. Prove that the set of all subsequential limits of $\left(x_{n}\right)$ is closed.
Hint: Let $\left(y_{k}\right)$ be a sequence of subsequential limits and assume that $y_{k} \rightarrow y$. Let $\left(x_{n_{k \ell}}\right)_{\ell \in \mathbb{N}}$ be a subsequence converging to y_{k}. The indices $\left(n_{k \ell}\right)$ form an infinite matrix (k is the index of the row and ℓ is that of the column). Taking an appropriate "quasidiagonal" of this matrix, we obtain a subsequence converging to y.
4. (a) Prove that Cauchy sequences are the same with respect to bi-Lipschitz equivalent metrics on a set X.
(b) However, the Cauchy property is not preserved under equivalence of metrics. Indeed, construct a metric d^{\prime} equivalent to the usual metric d on $[0,1)$ such that d^{\prime} has "fewer" Cauchy sequences than d, i.e. the d^{\prime}-Cauchy sequences form a strict subset of the d-Cauchy sequences. Moreover, make sure that d^{\prime} is a complete metric on $[0,1)$, i.e. every d^{\prime}-Cauchy sequence converges in $[0,1)$.
(c) Nevertheless, show that any metric d on a set X has the same Cauchy sequences as its (equivalent) 1-bounded version $d^{\prime}:=\min \{d, 1\}$.
5. Babylonian method of finding square roots. The goal is to build a sequence of rationals that approximates \sqrt{a}, for some fixed positive $a \in \mathbb{Q}$. Take any $x_{0}>0$, and define the rest of the sequence recursively by

$$
\begin{equation*}
x_{n+1}:=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) . \tag{*}
\end{equation*}
$$

Prove:
(a) If $\left(x_{n}\right)$ converges in \mathbb{R}, then its limit is \sqrt{a}.
(b) $x_{n}^{2} \geqslant a$ for all $n \geqslant 1$.

Hint: Rewrite equation (*) as a quadratic equation in variable x_{n} and consider its discriminant.
(c) The sequence $\left(x_{n}\right)$ is decreasing.
(d) Conclude that $\left(x_{n}\right)$ converges to \sqrt{a} in \mathbb{R}.
6. Let $\left(X_{n}, d_{n}\right)_{n=1}^{\infty}$ be a sequence of metric spaces and assume that each $d_{n} \leqslant 1$. Let $X:=\prod_{n \in \mathbb{N}} X_{n}$ be the Cartesian product of the sets X_{n} and define $d_{\infty}: X \times X \rightarrow[0,1]$ by

$$
d_{\infty}(x, y):=\sum_{n=1}^{0} 2^{-n} d_{n}(x(n), y(n))
$$

for $x, y \in X$.
(a) Prove that d_{∞} is a metric on X. We call this the infinite product metric.
(b) Prove that if each d_{n} is complete, then so is d_{∞}.
(c) For any set A, taking $X_{n}:=A$ and d_{n} the discrete metric on A, so $X=A^{\mathbb{N}}$. Prove that d_{∞} is bi-Lipschitz equivalent to the usual metric on $A^{\mathbb{N}}$. Conclude that $A^{\mathbb{N}}$ with the usual metric is a complete metric space. (We will give a much faster direct proof of this in class on Tuesday.)
7. Reward yourself with Steve Reich's Electric Counterpoint by Mat Bergström (or Pat Metheny, although he plays it a bit too fast for me). This is one of the truly revolutionary pieces of music.

