Metric Spaces and Topology Номеworк 2 Due: Feb 14 (Tue)

1. Show that every open set U in \mathbb{R} is a countable disjoint union of open intervals.

HINT: For countability, use the density of \mathbb{Q} . For disjointness, prove that each point $x \in U$ admits a \subseteq -maximum open interval $I_x \subseteq U$.

- 2. Let *A* be a countable nonempty set (alphabet). Consider the metric space $A^{\mathbb{N}}$, whose metric is defined the same way as for $2^{\mathbb{N}}$ and $\mathbb{N}^{\mathbb{N}}$. Prove that every open set *U* in $A^{\mathbb{N}}$ is a countable disjoint union of cylinders.
- **3.** Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that $\{(x, y) \in \mathbb{R}^2 : y < f(x)\}$ is an open set in \mathbb{R}^2 .

Definition. Let *X* be a set. Metrics d_1 and d_2 on *X* are called **bi-Lipschitz equivalent**, denoted $d_1 \sim_L d_2$, if there are constants $\alpha, \beta > 0$ such that $\alpha d_1 \leq d_2 \leq \beta d_1$. Metrics d_1 and d_2 are called **equivalent**, denoted $d_1 \sim d_2$ if they induce the same open sets, i.e. the metric spaces (*X*, d_1) and (*X*, d_2) have the same open sets.

- **4.** Let *X* be a set.
 - (a) For metrics d_1, d_2 on X, prove that $d_1 \sim_L d_2$ implies $d_1 \sim d_2$.
 - (b) For a metric *d* on *X*, let $d' := \min(d, 1)$ and prove that $d' \sim d$.

Remark: However, if *d* is unbounded, like in the case of \mathbb{R} , then $d' \not\sim_L d$, as was stated in Homework 1.

- **5.*** [*Optional*] Prove that every infinite metric space has an infinite open set whose complement is also infinite.
- 6. [*Optional*] If you need a restart and motivation, Bartok's Violin Concerto No. 2 played by Patricia Kopatchinskaja never fails. (Warning: going through this amazing piece will require work, one can't be a lazy listener.)
- 7. A set $W \subseteq N^{<\mathbb{N}}$ is called **dense** if for each $w \in \mathbb{N}^{<\mathbb{N}}$ there is $w' \in N^{<\mathbb{N}}$ such that the concatenation $ww' \in W$.
 - (a) Prove that if $W \subseteq \mathbb{N}^{<\mathbb{N}}$ is dense then attaching 0s in the end of each word in W yields a dense set $W0^{\infty} := \{w000\cdots : w \in W\}$ in $\mathbb{N}^{\mathbb{N}}$.
 - (b) Does there exist a dense set in N^{<ℕ} containing exactly one word of each length? Prove your answer.
- **8.** Let $C \subseteq [0,1]$ denote the Cantor set. Prove that $[0,1] \setminus C$ is dense open in [0,1].

9. Let (X, d) be a metric space and let $A, B \subseteq X$. Define the **distance** between A, B by

$$d(A,B) := \inf_{a \in A, b \in B} d(a,b).$$

We simply write d(a, B) and d(B, a) instead of d(A, B) and d(B, A) if $A = \{a\}$.

- (a) For any $a \in X$, prove that d(a, B) = 0 if and only if $a \in \overline{B}$.
- (b) Construct an example of a metric space (X,d) and disjoint closed subsets $A, B \subseteq X$ such that d(A, B) = 0.
- (c) For each $r \ge 0$, call the set $B_r(A) := \{x \in X : d(A, x) < r\}$ the **open** *r***-ball** around *A*. Prove that $B_r(A)$ is an open set.
- (d) Prove that $\overline{A} = \bigcap_{n \in \mathbb{N}^+} B_{1/n}(A)$.
- (e) Conclude that every closed set is G_{δ} (i.e. a countable intersection of open sets), and hence every open set is F_{σ} (i.e. a countable union of closed sets).