Definition. For an interval $I \subseteq \mathbb{R}$, a function $f: I \rightarrow \mathbb{R}$ is called convex if $f(t x+(1-t) y) \leqslant$ $t f(x)+(1-t) f(y)$ for all $x, y \in I$ and $t \in[0,1]$. In other words, the value of f at a convex combination of two points is below the same convex combination of values of f at those points. Concave is defined the same way using \geqslant instead.

1. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a concave function such that $f(0) \geqslant 0$.
(a) Prove that f is superlinear: $f(t x) \geqslant t f(x)$ for all $t \in[0,1]$ and $x \geqslant 0$.
(b) Prove that f is subadditive: $f(x+y) \leqslant f(x)+f(y)$ for all $x, y \geqslant 0$.

Hint: Start with $f(x)+f(y)$, write x and y as constant multiples of $x+y$ and use part (a).
(c) Let (X, d) be a metric space and suppose in addition (to being concave) that $f(0)=0$, $f(x)>0$ for all $x>0$, and that f is increasing (not necessarily strictly). Prove that the composition $f \circ d$ (i.e. the function $(x, y) \mapsto f(d(x, y)))$ is also a metric on X.
2. Let $n \in \mathbb{N}^{+}$(positive natural numbers) and $p>0$. Define the p-norm $\|x\|_{p}$ and the ∞-norm $\|x\|_{\infty}$ of a vector $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ by

$$
\begin{aligned}
& \|x\|_{p}:=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p} \\
& \|x\|_{\infty}:=\max _{i}\left|x_{i}\right| .
\end{aligned}
$$

(a) Follow the hint below to prove Minkovski's inequality: $\|x+y\|_{p} \leqslant\|x\|_{p}+\|y\|_{p}$ for all $x, y \in \mathbb{R}^{n}$.
Hint: The proof for $p=\infty$ is straightforward. For $p \in[1, \infty)$, we will use the homogeoneity (invariance under scalar multiplication) of $\|x+y\|_{p} \leqslant\|x\|_{p}+\|y\|_{p}$, an idea I learnt from Terry Tao. Dividing both sides by $\|x\|_{p}+\|y\|_{p}$ and raising to the $p^{\text {th }}$ power, it is enough to prove that

$$
\left\|t x^{\prime}+(1-t) y^{\prime}\right\|_{p}^{p} \leqslant 1,
$$

where $x^{\prime}:=\frac{x}{\|x\|_{p}}, y^{\prime}:=\frac{y}{\|y\|_{p}}$, and $t:=\frac{\|x\|_{p}}{\|x\|_{p}+\|y\|_{p}}$. Prove this using the convexity of the function $\alpha \mapsto \alpha^{p}$ for each coordinate $i \in\{1,2, \ldots n\}$.
(b) Deduce that $d_{p}(x, y):=\|x-y\|_{p}$ is a metric on \mathbb{R}^{n}.

Definition. Let X be a set. Metrics d_{1} and d_{2} on X are called bi-Lipschitz equivalent, $d_{1} \sim_{L} d_{2}$, if there are constants $\alpha, \beta>0$ such that $\alpha d_{1} \leqslant d_{2} \leqslant \beta d_{1}$. This means that for all $x, y \in X$,

$$
\alpha d_{1}(x, y) \leqslant d_{2}(x, y) \leqslant \beta d_{1}(x, y) .
$$

3. Let X be a set. Prove:
(a) Bi-Lipschitz equivalence of metrics on X is indeed an equivalence relation, i.e. it is reflexive $\left(d \sim_{L} d\right)$, symmetric $\left(d_{1} \sim_{L} d_{2} \Rightarrow d_{2} \sim_{L} d_{1}\right)$, and transitive ($d_{1} \sim_{L} d_{2} \wedge d_{2} \sim_{L}$ $\left.d_{3} \Rightarrow d_{1} \sim_{L} d_{3}\right)$.
(b) Metrics d_{1}, d_{2} on X are bi-Lipschitz equivalent if and only if there is a constant $\lambda>0$ such that $\frac{1}{\lambda} d_{1} \leqslant d_{2} \leqslant \lambda d_{1}$.
(c) Show that if d is a metric on X, then $d^{\prime}:=\min (d, 1)$ is also a metric on X. Provide and prove a necessary and sufficient condition for $d \sim_{L} d^{\prime}$.
4. Let $n \in \mathbb{N}^{+}$.
(a) Prove that $\|x\|_{\infty} \leqslant\|x\|_{p} \leqslant n^{1 / p}\|x\|_{\infty}$ for all $x \in \mathbb{R}^{n}$ and all $p \in[1, \infty]$.
(b) Deduce that the metrics d_{p} are all equivalent to each other for $p \in[1, \infty]$.
(c) Also deduce that $\lim _{p \rightarrow \infty}\|x\|_{p}=\|x\|_{\infty}$ for all $x \in \mathbb{R}^{n}$.
5. [Optional] Take a break and listen to Pyramid Song by Radiohead. What are your thoughts on the structure of this song?
Definition. A pseudo-metric on a set X is the same as a metric, but the requirement that distinct points have a positive distance is omitted; namely, it is a function $d: X \times X \rightarrow[0, \infty)$ such that $d(x, x)=0, d(x, y)=d(y, x)$, and $d(x, z) \leqslant d(x, y)+d(y, z)$ for all $x, y, z \in X$.
6. Let d be a pseudo-metric on a set X and define a binary relation on X by $x \approx_{d} y: \Leftrightarrow$ $d(x, y)=0$ for all $x, y \in X$.
(a) Prove that \approx_{d} is an equivalence relation on X.
(b) For $x \in X$, let $[x]_{d}$ denote the \approx_{d}-equivalence class of x, and let X / \approx_{d} denote the quotient of X by \approx_{d}, i.e. X / \approx_{d} is the set of \approx_{d}-equivalence classes. Prove that $d^{\prime}\left([x]_{d},[y]_{d}\right):=d(x, y)$ is a well-defined metric on X / \approx_{d}.
7. [Optional] Let X be a set and $d: X \times X \rightarrow \mathbb{R}$ be a function satisfying $d(x, x)=0, x \neq y \Rightarrow$ $d(x, y) \neq 0$, and $d(z, x) \leqslant d(x, y)+d(y, z)$ for all $x, y, z \in X$. Prove that d is a metric.
8. Recall that on the Cantor space $2^{\mathbb{N}}$, we defined the metric $d(x, y):=2^{-n(x, y)}$, where $n(x, y)$ is the least index $i \in \mathbb{N}$ such that $x(i) \neq y(i)$.
(a) Prove that d is an ultra-metric, i.e. a metric with the following stronger version of the triangle inequality: $d(x, z) \leqslant \max \{d(x, y), d(y, z)\}$ for all $x, y, z \in 2^{\mathbb{N}}$.
(b) For any $x \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, describe the open ball $B_{2^{-n}}(x)$ (draw a picture) and show that it is equal to the closed ball $\bar{B}_{2^{-(n+e)}}(x)$ for all $\epsilon \in(0,1]$. (We stated this in lecture, but I want you to work this out in detail on your own.)
9. Note that for each $n \in \mathbb{N}^{+}$, the set $\{0,1\}^{n}$ is a subset of \mathbb{R}^{n}. Letting d_{H} denote the Hamming metric on $\{0,1\}^{n}$, for which $p \in[0, \infty]$ is the identity map $x \mapsto x$ an isometry from $\left(\{0,1\}^{n}, d_{H}\right)$ to $\left(\mathbb{R}^{n}, d_{p}\right)$? Prove your answer.
