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Metric Spaces and Topology Homework 1 Due: Feb 7 (Tue)

Definition. For an interval I ⊆R, a function f : I →R is called convex if f (tx + (1− t)y) ⩽
tf (x) + (1− t)f (y) for all x,y ∈ I and t ∈ [0,1]. In other words, the value of f at a convex
combination of two points is below the same convex combination of values of f at those
points. Concave is defined the same way using ⩾ instead.

1. Let f : [0,∞)→R be a concave function such that f (0) ⩾ 0.

(a) Prove that f is superlinear: f (tx) ⩾ tf (x) for all t ∈ [0,1] and x ⩾ 0.

(b) Prove that f is subadditive: f (x+ y) ⩽ f (x) + f (y) for all x,y ⩾ 0.

Hint: Start with f (x) + f (y), write x and y as constant multiples of x+ y and use
part (a).

(c) Let (X,d) be a metric space and suppose in addition (to being concave) that f (0) = 0,
f (x) > 0 for all x > 0, and that f is increasing (not necessarily strictly). Prove that
the composition f ◦ d (i.e. the function (x,y) 7→ f (d(x,y))) is also a metric on X.

2. Let n ∈ N
+ (positive natural numbers) and p > 0. Define the p-norm ∥x∥p and the

∞-norm ∥x∥∞ of a vector x ..= (x1, . . . ,xn) ∈Rn by

∥x∥p ..= (|x1|p + · · ·+ |xn|p)1/p

∥x∥∞ ..= max
i
|xi |.

(a) Follow the hint below to prove Minkovski’s inequality: ∥x + y∥p ⩽ ∥x∥p + ∥y∥p for
all x,y ∈Rn.

Hint: The proof for p = ∞ is straightforward. For p ∈ [1,∞), we will use the
homogeoneity (invariance under scalar multiplication) of ∥x + y∥p ⩽ ∥x∥p + ∥y∥p, an
idea I learnt from Terry Tao. Dividing both sides by ∥x∥p + ∥y∥p and raising to the
pth power, it is enough to prove that

∥tx′ + (1− t)y′∥pp ⩽ 1,

where x′ ..= x
∥x∥p

, y′ ..= y
∥y∥p

, and t ..=
∥x∥p

∥x∥p+∥y∥p
. Prove this using the convexity of the

function α 7→ αp for each coordinate i ∈ {1,2, . . .n}.
(b) Deduce that dp(x,y) ..= ∥x − y∥p is a metric on R

n.

Definition. Let X be a set. Metrics d1 and d2 on X are called bi-Lipschitz equivalent,
d1 ∼L d2, if there are constants α,β > 0 such that αd1 ⩽ d2 ⩽ βd1. This means that for all
x,y ∈ X,

αd1(x,y) ⩽ d2(x,y) ⩽ βd1(x,y).

3. Let X be a set. Prove:
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(a) Bi-Lipschitz equivalence of metrics on X is indeed an equivalence relation, i.e. it is
reflexive (d ∼L d), symmetric (d1 ∼L d2⇒ d2 ∼L d1), and transitive (d1 ∼L d2∧d2 ∼L
d3⇒ d1 ∼L d3).

(b) Metrics d1,d2 on X are bi-Lipschitz equivalent if and only if there is a constant
λ > 0 such that 1

λd1 ⩽ d2 ⩽ λd1.

(c) Show that if d is a metric on X, then d′ ..= min(d,1) is also a metric on X. Provide
and prove a necessary and sufficient condition for d ∼L d′.

4. Let n ∈N+.

(a) Prove that ∥x∥∞ ⩽ ∥x∥p ⩽ n1/p∥x∥∞ for all x ∈Rn and all p ∈ [1,∞].

(b) Deduce that the metrics dp are all equivalent to each other for p ∈ [1,∞].

(c) Also deduce that limp→∞ ∥x∥p = ∥x∥∞ for all x ∈Rn.

5. [Optional] Take a break and listen to Pyramid Song by Radiohead. What are your
thoughts on the structure of this song?

Definition. A pseudo-metric on a set X is the same as a metric, but the requirement that
distinct points have a positive distance is omitted; namely, it is a function d : X×X→ [0,∞)
such that d(x,x) = 0, d(x,y) = d(y,x), and d(x,z) ⩽ d(x,y) + d(y,z) for all x,y,z ∈ X.

6. Let d be a pseudo-metric on a set X and define a binary relation on X by x ≈d y ..⇔
d(x,y) = 0 for all x,y ∈ X.

(a) Prove that ≈d is an equivalence relation on X.

(b) For x ∈ X, let [x]d denote the ≈d-equivalence class of x, and let X/ ≈d denote the
quotient of X by ≈d , i.e. X/ ≈d is the set of ≈d-equivalence classes. Prove that
d′([x]d , [y]d) ..= d(x,y) is a well-defined metric on X/ ≈d .

7. [Optional] Let X be a set and d : X ×X→R be a function satisfying d(x,x) = 0, x , y⇒
d(x,y) , 0, and d(z,x) ⩽ d(x,y) + d(y,z) for all x,y,z ∈ X. Prove that d is a metric.

8. Recall that on the Cantor space 2N, we defined the metric d(x,y) ..= 2−n(x,y), where
n(x,y) is the least index i ∈N such that x(i) , y(i).

(a) Prove that d is an ultra-metric, i.e. a metric with the following stronger version of
the triangle inequality: d(x,z) ⩽max {d(x,y),d(y,z)} for all x,y,z ∈ 2N.

(b) For any x ∈ 2N and n ∈ N, describe the open ball B2−n(x) (draw a picture) and
show that it is equal to the closed ball B2−(n+ϵ)(x) for all ϵ ∈ (0,1]. (We stated this in
lecture, but I want you to work this out in detail on your own.)

9. Note that for each n ∈ N
+, the set {0,1}n is a subset of R

n. Letting dH denote the
Hamming metric on {0,1}n, for which p ∈ [0,∞] is the identity map x 7→ x an isometry
from ({0,1}n ,dH ) to (Rn,dp)? Prove your answer.
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https://youtu.be/3M_Gg1xAHE4

