Metric Spaces and Topology Номеwork 12 Due: May 19 (Fri)

- **1.** Let $X = \prod_{i \in I} X_i$ be a product of sets. Show that no set of the form $\bigcap_{i \in I_0} [i \mapsto V_i]$ with I_0 finite, is contained in a set of the form $\bigcap_{j \in I_1} [j \mapsto U_j]$ with I_1 infinite and $U_j \subsetneq X_j$ for each $j \in I_1$.
- 2. **Trees.** Let *A* be a set (alphabet) and recall that for $u, v \in A^{<\mathbb{N}}$, we write $u \subseteq v$ if *u* is an initial subword of *v*, i.e. |u| < |v| and $v|_{|u|} = u$. A (set-theoretic) **tree** on *A* is a nonempty subset $T \subseteq A^{<\mathbb{N}}$ downward closed under \subseteq , i.e. whenever $v \in T$ and $u \subseteq v$ then $u \in T$. Denote by [T] the set of its infinite branches, i.e.

$$[T] := \left\{ x \in A^{\mathbb{N}} : x|_n \in T \text{ for each } n \in \mathbb{N} \right\}.$$

We equip $A^{\mathbb{N}}$ with the product topology, where *A* is given the discrete topology.

- (a) Prove that [T] is a closed subset of $A^{\mathbb{N}}$.
- (b) For $u, v \in T$, call v a successor (or a child) of u if v = ua for some $a \in A$. Call a vertex $u \in T$ a leaf if it has no successor in T. Call T pruned if it has no leaves.

For each set $Y \subseteq A^{\mathbb{N}}$, define a pruned tree T_Y on A so that $\overline{Y} = [T_Y]$. Thus, the closed subsets of $A^{\mathbb{N}}$ are exactly those of the form [T] for some pruned tree T on A.

(c) We say that a tree T on A is **finitely branching** if each $u \in T$ has only finitely many successors.

Prove that if *T* is finitely branching then [*T*] is compact.

- (d) Conversely, for a pruned tree T, if [T] is compact then T is finitely branching. Thus, the compact subsets of $A^{\mathbb{N}}$ are exactly those of the form [T] for some finitely branching pruned tree T on A.
- 3. Let X be a topological space and E be an equivalence relation on X. Recall that the **quotient** X/E is the set of *E*-equivalence classes and let $\pi : X \twoheadrightarrow X/E$ be the **quotient map**, i.e. $x \mapsto [x]_E$, where $[x]_E$ denotes the *E*-equivalence class of x. The **quotient topology** on X/E is defined by declaring a set $U \subseteq X/E$ open if $\pi^{-1}(U)$ is open in X. In other words, this is the strongest topology for which π is continuous. Prove:
 - (a) This is indeed a topology.
 - (b) For any topological space Y, a map $f : X/E \to Y$ is continuous if and only if $f \circ \pi : X \to Y$ is continuous.
 - (c) The quotient topology is T_1 if and only if each *E*-equivalence class is closed.
 - (d) Let $E_{\mathbb{Z}}$ be the equivalence relation on \mathbb{R} defined by being in the same \mathbb{Z} -coset, i.e. reals $xE_{\mathbb{Z}}y$ if $y x \in \mathbb{Z}$. Considering the usual (Euclidean) topology on \mathbb{R} , the quotient $\mathbb{R}/\mathbb{Z} := \mathbb{R}/E_{\mathbb{Z}}$ is homeomorphic to the unit circle $S^1 \subseteq \mathbb{R}^2$.
- **4.** Let \mathcal{T}_0 and \mathcal{T}_1 be topologies on a set *X* such that $\mathcal{T}_0 \subseteq \mathcal{T}_1$. Prove that if \mathcal{T}_0 is Hausdorff and \mathcal{T}_1 is compact, then $\mathcal{T}_0 = \mathcal{T}_1$. Deduce that in any chain of topologies $(\mathcal{T}_i)_{i \in I}$ on *X*, i.e.

(I, <) is a linearly ordered set and $\mathcal{T}_i \subseteq \mathcal{T}_j$ for all i < j in *I*, the indices $i \in I$ for which X_i is compact form an initial set¹ I_{cmp} of *I*, and the indices $j \in I$ for which X_j is Hausdorff form a terminal set¹ I_{Hsd} of *I*, and $|I_{cmp} \cap I_{Hsd}| \leq 1$, i.e. էրկու էրնեկ ամենաշատը մի տեղ ա լինում.

- **5.** Prove that a subset of \mathbb{R}^n (in any d_p metric, $1 \le p \le \infty$) is compact if and only if it is closed and bounded.
- 6. For each $n \in \mathbb{N}^+$, let $f_n : [0,1] \to 10 := \{0,1,\ldots,9\}$ be the function that maps each $x \in [0,1]$ to the n^{th} digit after '0.' in the decimal representation of x (pick an option to make the decimal representation unique). Prove that the sequence (f_n) does not have a pointwise convergent subsequence, so the product topology on $10^{[0,1]}$ is not sequentially compact.
- 7. [Optional] Prove that Tychonoff's theorem implies Axiom of Choice.

HINT: Given a sequence of sets $(X_i)_{i \in I}$, add a new point to each X_i obtaining a set \tilde{X}_i , and equip \tilde{X}_i with the weakest topology (consisting of three open sets) in which this new point is isolated, turning \tilde{X}_i into a compact space. Suppose a choice $(x_i)_{i \in I} \in \prod_{i \in I} X_i$ doesn't exist and build an open cover of $\prod_{i \in I} \tilde{X}_i$ with no finite subcover.

- **8.** Let *X* be a first-countable topological space. Prove:
 - (a) Every point $x \in X$ admits a countable decreasing neighbourhood basis, i.e. there a neighbourhood basis (U_n) such that $U_n \supseteq U_{n+1}$ for all $n \in \mathbb{N}$.
 - (b) For any $Y \subseteq X$ and $x \in \overline{Y}$, there is a sequence $(y_n) \subseteq Y$ converging to x.
 - (c) ²If X is compact then it is sequentially compact.

HINT: Consider the sets $K_n := \overline{\{x_m : m \ge n\}}$.

- (d) If in addition (to first countability) *X* is T_1 and a sequence $(x_n) \subseteq X$ does not have a convergent subsequence, then $\{x_n : n \in \mathbb{N}\}$ is closed.
- (e) ³If in addition (to first countability) *X* is normal, then *X* is sequentially compact if and only if every continuous real-valued function on *X* is bounded. Thus, for metrizable spaces compactness is equivalent to the boundedness of every continuous real-valued function.

HINT: For \leftarrow , use part (d) and unbounded Tietze extension.

9. [*Optional*] Prove without using Axiom of Choice that a product of two compact spaces is compact.

HINT: Follow the outline written in Lecture 26 suggested by Hayk Karapetyan.

10. [*Optional*] Let *X* be a noncompact topological space. Prove using Zorn's lemma that there is an inclusion-maximal open cover of *X* that does not admit a finite subcover.

¹An **initial** (resp. **terminal**) set *J* of (*I*, <) is a downward (resp. upward) closed subset of *I*, i.e. if $j \in J$ and i < j (resp. j < i) then $i \in J$.

²Thanks to Vahagn Hovhannisyan for asking this question!

³Thanks to Hayk Melqonyan for asking this question!