Metric Spaces and Topology Номеч

Homework 11

Due: May 10 (Wed)

- **1.** For any set *X*, recall that $BC(X) := BC(X, \mathbb{R})$ denotes the metric space of bounded real-valued continuous functions with the uniform metric d_u . For each $f \in BC(X)$, let $||f||_u := d_u(f, 0)$, where 0 denotes the constant 0 function on *X*. For a sequence $(f_n) \subseteq BC(X)$, we say that the series $\sum_{n=0}^{\infty} f_n$
 - (i) **uniformly converges** if the sequence $(\sum_{n=0}^{N} f_n)_N$ of partial sums uniformly converges, i.e. converges in the uniform metric d_u to some function $f \in BC(X)$.
 - (ii) **absolutely converges** if the series (of real numbers) $\sum_{n=0}^{\infty} ||f_n||_u$ converges.

Prove that if the series $\sum_{n=0}^{\infty} f_n$ absolutely converges, then it uniformly converges.

- 2. Show that for any bounded interval $I \subseteq \mathbb{R}$ (including half-open), the Tietze extension theorem holds with *I* as the codomain, i.e. for a normal topological space *X* and a closed set $C \subseteq X$, a continuous function $f : C \to I$ admits a continuous extension $\overline{f} : X \to I$.
- **3.** A topological space *X* is called **disconnected** if partitions into two nonempty open sets, i.e. $X = U \cup V$ where *U*, *V* are nonempty disjoint open (hence clopen) sets. Otherwise, we call it **connected**. Equivalently, *X* is connected if the only clopen sets are *X* and \emptyset . We say that a subset $Y \subseteq X$ is connected/disconnected if it is so in the relative topology.
 - (a) Observe: A subspace $Y \subseteq X$ is disconnected if and only if there are (not necessarily disjoint) open (in X) sets $U, V \subseteq X$ such that $Y \subseteq U \cup V$, and $U \cap Y$ and $V \cap Y$ are nonempty and disjoint.
 - (b) Prove: If $Y \subseteq X$ is connected, then so is \overline{Y} .
 - (c) Let $(S_i)_{i \in I}$ be a collection connected subsets of X with nonempty pairwise intersections, i.e. $S_i \cap S_j \neq \emptyset$ for all $i, j \in I$. Prove that the union $\bigcup_{i \in I} S_i$ is connected.
 - (d) Prove that for each point $x \in X$, there is \subseteq -maximum (i.e. largest) connected set $C_x \ni x$. Show that this set C_x is closed. C_x is called the **connected component** of x.
 - (e) A space X is called **totally disconnected** if the connected component of each point $x \in X$ is $\{x\}$. Prove that zero-dimensional T_1 spaces are totally disconnected.
 - (f) Prove that continuous functions map connected spaces to connected spaces, i.e. for topological spaces X, Y, if $f : X \to Y$ is continuous and X is connected, then F(X) is connected (in the relative topology of Y).
 - (g) Characterize the connected subsets of \mathbb{R} .
 - (h) Deduce the **Intermediate Value Theorem**: Every continuous function $f : [a, b] \rightarrow \mathbb{R}$ admits all values between f(a) and f(b).
- 4. Prove the following theorem using the outline below:

Theorem. Compact Hausdorff spaces are normal.

Proof-sketch. Let *X* be a compact Hausdorff space and let *A*, *B* be disjoint closed sets. Recall the proof that compact subsets of Hausdorff spaces are closed, and use its argument to show that *X* is T_3 ; in particular, for each point $x \in A$, there are disjoint open sets U_x and V_x such that $U_x \ni x$ and $V_x \supseteq B$. Switching the roles of *A* and *B* (treating the whole *B* as a "point"), use the same argument to show that there are disjoint open sets $U \supseteq A$ and $V \supseteq B$.

- 5. In Lecture 23 Example (e), we outlined a proof that bounded closed intervals in \mathbb{R} are compact. Complete this proof, filling in the details.
- 6. Show that in the cofinite topology on \mathbb{R} (= Zariski topology), every subset is compact. Conclude that not all compact sets are closed, hence T_1 is not enough to make compact sets closed.
- 7. Prove that continuous functions map compact spaces to compact spaces, i.e. for topological spaces X, Y, if $f : X \to Y$ is continuous and X is compact, then F(X) is compact (in the relative topology of Y). Deduce that every real-valued continuous function on a compact space is bounded and attains minimum and maximum values.
- **8. Baire category for compact Hausdorff.** Prove that compact Hausdorff (hence normal) spaces are Choquet, and hence Baire.
- **9.** [*Optional*] Prove the **almost perfect set property for compact Hausdorff spaces.** For any nonempty perfect compact Hausdorff space *X*, there is an injection $2^{\mathbb{N}} \hookrightarrow X$. (This injection need not be continuous though.) Pinpoint the use of Axiom of Choice, if any.