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Metric Spaces and Topology Homework 11 Due: May 10 (Wed)

1. For any set X, recall that BC(X) ..= BC(X,R) denotes the metric space of bounded
real-valued continuous functions with the uniform metric du. For each f ∈ BC(X),
let ∥f ∥u ..= du(f ,0), where 0 denotes the constant 0 function on X. For a sequence
(fn) ⊆ BC(X), we say that the series

∑∞
n=0 fn

(i) uniformly converges if the sequence (
∑N

n=0 fn)N of partial sums uniformly con-
verges, i.e. converges in the uniform metric du to some function f ∈ BC(X).

(ii) absolutely converges if the series (of real numbers)
∑∞

n=0 ∥fn∥u converges.

Prove that if the series
∑∞

n=0 fn absolutely converges, then it uniformly converges.

2. Show that for any bounded interval I ⊆R (including half-open), the Tietze extension
theorem holds with I as the codomain, i.e. for a normal topological space X and a closed
set C ⊆ X, a continuous function f : C→ I admits a continuous extension f : X→ I .

3. A topological space X is called disconnected if partitions into two nonempty open sets,
i.e. X = U ∪V where U,V are nonempty disjoint open (hence clopen) sets. Otherwise,
we call it connected. Equivalently, X is connected if the only clopen sets are X and ∅.
We say that a subset Y ⊆ X is connected/disconnected if it is so in the relative topology.

(a) Observe: A subspace Y ⊆ X is disconnected if and only if there are (not necessarily
disjoint) open (in X) sets U,V ⊆ X such that Y ⊆U ∪V , and U ∩Y and V ∩Y are
nonempty and disjoint.

(b) Prove: If Y ⊆ X is connected, then so is Y .

(c) Let (Si)i∈I be a collection connected subsets of X with nonempty pairwise intersec-
tions, i.e. Si ∩ Sj , ∅ for all i, j ∈ I . Prove that the union

⋃
i∈I Si is connected.

(d) Prove that for each point x ∈ X, there is ⊆-maximum (i.e. largest) connected set
Cx ∋ x. Show that this set Cx is closed. Cx is called the connected component of x.

(e) A space X is called totally disconnected if the connected component of each point
x ∈ X is {x}. Prove that zero-dimensional T1 spaces are totally disconnected.

(f) Prove that continuous functions map connected spaces to connected spaces, i.e. for
topological spaces X,Y , if f : X→ Y is continuous and X is connected, then F(X)
is connected (in the relative topology of Y ).

(g) Characterize the connected subsets of R.

(h) Deduce the Intermediate Value Theorem: Every continuous function f : [a,b]→R

admits all values between f (a) and f (b).

4. Prove the following theorem using the outline below:

Theorem. Compact Hausdorff spaces are normal.
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Proof-sketch. Let X be a compact Hausdorff space and let A,B be disjoint closed sets.
Recall the proof that compact subsets of Hausdorff spaces are closed, and use its
argument to show that X is T3; in particular, for each point x ∈ A, there are disjoint
open sets Ux and Vx such that Ux ∋ x and Vx ⊇ B. Switching the roles of A and B
(treating the whole B as a “point”), use the same argument to show that there are
disjoint open sets U ⊇ A and V ⊇ B. □

5. In Lecture 23 Example (e), we outlined a proof that bounded closed intervals in R are
compact. Complete this proof, filling in the details.

6. Show that in the cofinite topology on R (= Zariski topology), every subset is compact.
Conclude that not all compact sets are closed, hence T1 is not enough to make compact
sets closed.

7. Prove that continuous functions map compact spaces to compact spaces, i.e. for topo-
logical spaces X,Y , if f : X→ Y is continuous and X is compact, then F(X) is compact
(in the relative topology of Y ). Deduce that every real-valued continuous function on a
compact space is bounded and attains minimum and maximum values.

8. Baire category for compact Hausdorff. Prove that compact Hausdorff (hence normal)
spaces are Choquet, and hence Baire.

9. [Optional] Prove the almost perfect set property for compact Hausdorff spaces. For
any nonempty perfect compact Hausdorff space X, there is an injection 2N ↪→ X. (This
injection need not be continuous though.) Pinpoint the use of Axiom of Choice, if any.
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