

- 1. Let $f : X \to Y$ be a function between topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) . Let \mathcal{T}'_X be the **refinement** of \mathcal{T}_X obtained by **adjoining** the sets $f^{-1}(V)$, where $V \in \mathcal{T}_Y$, i.e., \mathcal{T}'_X is the topology generated by \mathcal{T}_X and sets of the form $f^{-1}(V)$. Prove:
 - (a) f is not continuous if and only if \mathcal{T}'_X is a strictly finer topology than \mathcal{T}_X .
 - (b) On graph(f) $\subseteq X \times Y$, the restriction of the topologies $\mathcal{T}_X \times \mathcal{T}_Y$ and $\mathcal{T}'_X \times \mathcal{T}_Y$ coincide (even when \mathcal{T}'_X is strictly finer than \mathcal{T}_X).
 - (c) (X, \mathcal{T}'_X) is homeomorphic to graph(*f*) in the product topology $\mathcal{T}_X \times \mathcal{T}_Y$. In particular, if *f* is continuous, then its domain is homeomorphic to its graph.
- **2.** Let $X := \prod_{i \in I} X_i$ be the product of topological spaces X_i , $i \in I$. Prove that if a sequence $(x_n) \subseteq X$ converges to $x \in X$ in the product topology, then (x_n) converges to x **pointwise**, i.e. $\lim_n x_n(i) = x(i)$ for each $i \in I$.

Remark: The converse was proven in lecture.

- 3. Prove that the functions $f_n := x \mapsto x^n : [0,1] \to [0,1]$ pointwise converge to the function $f(x) := \begin{cases} 0 & \text{if } x \in [0,1) \\ 1 & \text{if } x = 1 \end{cases}$, but they don't converge to f uniformly (i.e. in the uniform metric).
- **4.** Let *A* be a countable discrete topological space of at least two elements and let $X := A^{\mathbb{N}}$. Prove:
 - (a) The box topology on $A^{\mathbb{N}}$ is discrete, in particular, not separable (although A is).
 - (b) The product topology on $A^{\mathbb{N}}$ is induced by the usual metric $d(x, y) := 2^{-n}$ for distinct $x, y \in A^{\mathbb{N}}$, where $n \in \mathbb{N}$ is the least index at which x and y differ.
- **5.** Prove that the countable product of separable topological spaces is separable (in the product topology).
- **6.** [*Optional*] Consider the set $X := [0,1]^{\mathbb{N}}$, where \mathbb{N} and [0,1] are given the relative topology of \mathbb{R} .
 - (a) Prove that the uniform topology on *X* is strictly coarser than the box topology.
 - (b) Prove that the uniform topology on *X* is not separable.
- **7.** Let *X*, *Y*, *Z* be topological spaces and let $f : X \to Y$ and $g : Y \to Z$. Recall that the composition $g \circ f : X \to Z$ is defined by $x \mapsto g(f(x))$. Prove:
 - (a) If f is continuous at $x \in X$ and g is continuous at f(x), then $g \circ f$ is continuous at x.

- (b) If *f* is continuous and the restriction $g|_{f(X)}$ is continuous, then $g \circ f$ is continuous. In particular, compositions of continuous functions are continuous.
- 8. Let $X := \prod_{i \in \mathbb{N}} X_i$ be a countable product of second countable topological spaces and let \mathcal{B}_i be a countable basis for X_i . Prove that the cylinders of the form

$$[i_1 \mapsto U_{i_1}, i_2 \mapsto U_{i_2}, \dots, i_n \mapsto U_{i_n}],$$

where $n \in \mathbb{N}$, $(i_1, i_2, ..., i_n) \in \mathbb{N}^n$ and $U_{i_j} \in \mathcal{B}_{i_j}$, form a basis for *X*.

9. Let $X := \prod_{i \in \mathbb{N}} X_i$ be a countable product of metrizable topological spaces with a metric $d_i \leq 1$ for each $i \in \mathbb{N}$. Prove that the metric

$$d \coloneqq \sum_{i \in \mathbb{N}} 2^{-i} d_i$$

on *X* induce the product topology on *X*.

HINT: To show that metric-open sets are product-open, it is enough (why?) to prove that for any ball $B_r(x)$ with r > 0, there is a product-open set $U \ni x$ and $U \subseteq B_r(x)$.

10. [Optional] Prove Urysohn's lemma for metric spaces more easily, using the metric.