Due: Apr 28/29

Homework 3

Math 594/740: Topics in Ergodic...

Lemma 1 (Rokhlin). Let T be an aperiodic¹ pmp automorphism of a standard probability space (X, μ) . For every $n \ge 1$ and $\varepsilon > 0$, there is a Borel $B \subseteq X$ such that the sets B, T(B), $T^2(B)$, ..., $T^{n-1}(B)$ are pairwise disjoint and $\bigcup_{i=0}^{n-1} T^i(B)$ has measure $> 1 - \varepsilon$.

Remark 2. The sequence B, T(B), $T^2(B)$, ..., $T^{n-1}(B)$ is called a *Rokhlin tower* of height n.

- 1. Follow the steps below to prove the Rokhlin lemma (Lemma 1).
 - (i) Take a Borel complete E_T -section $M \subseteq X$ such that $\mu(M) < n\varepsilon$.
 - (ii) Take $B := \bigcup_{k \in \mathbb{N}} B_k$, where $B_k := \{x \in T^{kn}(M) : T^j(x) \notin M \text{ for all } 0 \le j < k(n+1)\}$.
 - (iii) Show that the set $Z := X \setminus \bigcup_{i=0}^{n-1} T^i(B)$ is contained in $\bigcup_{i=1}^{n-1} T^{-i}(M)$, so its measure is $< \varepsilon$.

Hint: We are trying to tile each orbit by intervals of size n. Think of a single orbit, picturing it as a directed \mathbb{Z} -line, and colour the points in M red, the rest grey. Now colour the points in each B_k blue to understand what these sets are. Then colour all of $\bigcup_{i=0}^{n-1} T^i(B)$ blue to see which points are still left grey.

Theorem 3 (Luzin–Novikov). Let X, Y be standard Borel spaces and $B \subseteq X \times Y$ be a Borel set. If the X-fibers of B are countable (i.e. B_X is countable for each $X \in X$), then $\operatorname{proj}_X(B)$ is Borel and $B = \bigcup_{n \in \mathbb{N}} \operatorname{graph}(f_n)$, where each $f_n : \operatorname{proj}_X(B) \to Y$ is a Borel function.

Remark 4. This theorem says that countable-to-one Borel images of Borel sets are Borel. Moreover, it allows scanning the fibers in a Borel way: indeed, each $x \in X$ now has Borel names² for the elements in its fiber B_x , namely $f_0(x), f_1(x),...$

2. Prove that any locally finite Borel graph G on a standard Borel space X admits a countable proper Borel vertex-colouring $c: X \to \mathbb{N}$.

HINT: Let (U_n) be an open basis for a Polish topology on X. Then each $x \in X$ admits a smallest n such that $x \in U_n$ but none of the G-neighbours of x are in U_n .

3. Let E be a CBER on a standard Borel space X.

For $n \ge 1$, let $[X]_E^n$ denote the set of all subsets $S \subseteq X$ of size n contained in a single E-class (i.e. the elements of F are all E-equivalent to each other). Denote $[X]_E^{<\mathbb{N}} := \bigcup_{n \ge 1} [X]_E^n$, the set of all E-equivalent finite nonempty subsets of X. Let \mathcal{G} be the *intersection graph* on $[X]_E^{<\mathbb{N}}$, i.e. put an edge between the sets $S_0, S_1 \in [X]_E^{<\mathbb{N}}$ if $S_0 \cap S_1 \ne \emptyset$.

¹Each *T*-orbit is infinite (hence looks like a \mathbb{Z} -line).

²Émile, Armand, ... (Forte Shinko's joke)

- (a) Show that each $[X]_E^n$ can be viewed as a Borel subset of X^n and hence is standard Borel. Similarly for $[X]_E^{\le \mathbb{N}}$.
- (b) Note that $[X]_E^2$ is exactly the complete graphing $G_E := E \setminus \operatorname{Id}_X$ of E, and recall that the Feldman–Moore theorem is equivalent to the statement that the complete graphing G_E of E admits a countable proper Borel edge-colouring $G_E \to \mathbb{N}$. An edge-colouring of G_E is the same as a vertex-colouring of the intersection graph \mathcal{G} restricted to $[X]_E^2$. Thus, the following generalizes the Feldman–Moore theorem:

Theorem 5 (Kechris–Miller). The intersection graph \mathcal{G} on $[X]_E^{\leq \mathbb{N}}$ admits a countable proper Borel vertex-colouring $c: [X]_E^{\leq \mathbb{N}} \to \mathbb{N}$.

Prove this theorem following these steps:

- (i) Letting (f_n) be Borel functions (names) as in the Luzin–Novikov theorem applied to B := E, we record, for each $S \in [X]_E^{<\mathbb{N}}$ how each element of S refers to the others (so it's an $|S| \times |S|$ matrix of names). More precisely, fix a Borel linear order < on X and write the elements of each $S \in [X]_E^{<\mathbb{N}}$ in the increasing order: $s_1 < s_2 < \dots s_k$. Map S to the $k \times k$ matrix $M_S \in \mathbb{N}^{k^2}$, whose (i,j) entry is the least $n \in \mathbb{N}$ such that $f_n(s_i) = s_j$.
- (ii) The function $c_0: S \mapsto M_S$ is a countable Borel colouring, but it may not be proper, i.e. there may be $S_0, S_1 \in [X]_E^{\mathbb{N}}$ with $S_0 \cap S_1 \neq \emptyset$ having the same colour. However, prove that \mathcal{G} restricted to each colour is locally finite, i.e. each $S \in [X]_E^{\mathbb{N}}$ can only have finite-many \mathcal{G} -neighbours of the same c_0 -colour.
- (iii) Finish the proof using Question 2.
- **4.** Let G be a locally countable Borel graph on a standard Borel space X. Call a set $Y \subseteq X$ G-independent if no two vertices in Y are connected by an edge in G. Prove that if G admits a countable proper Borel vertex-colouring then there is maximal independent set $Y \subseteq X$ that is Borel.
- 5. Let E be a CBER on a standard Borel space X and let $\Omega \subseteq [X]_E^{<\mathbb{N}}$ be a Borel set (think of Ω as a property). Prove that there is a maximal collection $\Omega' \subseteq \Omega$ that is Borel and the elements of Ω' are pairwise disjoint.
- **6.** Let *E* be a pmp CBER on a standard probability space (X, μ) . Prove in detail that if *G* is a Borel graphing of *E* that achieves the cost of *E*, then *G* is acyclic.
- 7. Prove in detail that a CBER E is hyperfinite if and only if it is induced by a Borel action of \mathbb{Z} .