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Homework 2 Math 594/740: Topics in Ergodic. . . Due: Mar 21 (Mon)

Definition 1. Let Γ be a countable semigroup (e.g. N or Z) and let Γ ↷ (X,µ) be a (right)
pmp Borel action on a standard probability space. This induces a (left) action on of Γ on
L2(X,µ) by isometries γ · f (x) ..= f (xγ) (Koopman representation). We call f ∈ L2(X,µ) almost
periodic for this action if Γ · f ..= {γ · f : γ ∈ Γ } is precompact1 in L2(X,µ).

1. Let T be a pmp transformation on (X,µ); in other words, we have a pmp action of N.
In class we proved that if T is weakly mixing then the only almost periodic functions
in L2(X,µ) are constants. Give a slightly cleaner proof of this using the equivalent
definition of weak mixing where we take the usual limit (not that of averages) but we
avoid a density 0 set.

Definition 2. Call a subset S of a countable group G syndetic if there is a finite subset
F ⊆ Γ such that FS = Γ ; for Γ ..= Z, this just means that S has bounded gaps.

2. Let Γ ↷ (X,µ) be a pmp action of a countable group Γ . Prove that f ∈ L2(X,µ) is almost
periodic if and only if for each ε > 0, the set {γ ∈ Γ : ∥γ · f − f ∥2 < ε} is syndetic.

Theorem 3 (Furstenberg Multiple Recurrence). Let Z ↷ (X,µ) be a pmp action, where 1
acts via the transformation T . For any k ⩾ 1 and any non-negative function f ∈ L∞(X,µ) with∫
X
f dµ > 0, there is d ⩾ 1 such that

∫
X
f (T df )(T 2df ) . . . (T (k−1)df )dµ > 0. In particular, taking

f ..= 1A for a measurable set A ⊆ X, we get µ(A∩ T −dA∩ T −2nA∩ · · · ∩ T −(k−1)dA) > 0.

3. Let Z↷ (X,µ) be a pmp action, where 1 acts via the transformation T . Follow the steps
below to prove the Furstenberg Multiple Recurrence theorem assuming f is almost
periodic.

Assume without loss of generality that ∥f ∥∞ = 1. Fix ε > 0 (to be specified later) and
let d ⩾ 1 be such that ∥T df − f ∥2 < ε (there is a syndetic set of such d, remember?)

(a) Show that for every j = 0, . . . , k − 1, ∥T jdf − f ∥2 < kε. In particular, ∥T jdf − f ∥1 < kε.

(b) Realize that for every g ∈ L∞(X,µ), pointwise multiplication by g is a Lipschitz
operator, more precisely, for all h ∈ L1(X,µ), ∥gh∥ ⩽ ∥g∥∞∥h∥1.

(c) Prove by induction on k that ∥f (T df )(T 2df ) . . . (T (k−1)df ) − f k∥1 ⩽ Ok(ε), where
Ok(ε) means it is Ckε, where Ck is a constant depending only on k.

Hint: Apply triangle inequality to ∥f (T df )(T 2df ) . . . (T (k−1)df ) − f k∥1 with the
intermediate term f (T df )(T 2df ) . . . (T (k−2)df )f .

1Has compact closure. Equivalently, admits finite ε-nets.
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(d) Conclude that
∫
X
f (T df )(T 2df ) . . . (T (k−1)df dµ =

∫
X
f k +Ok(ε), and deduce the theo-

rem.

Definition 4. A countable Borel equivalence relation (CBER) E on a standard Borel space
X is an equivalence relation that is Borel (viewed as a subset of X2) and each E-class is
countable.

4. Let Γ ↷ X be a Borel action of a countable group Γ on a standard Borel space X.
Verify that its orbit equivalence relation EΓ is a CBER. You may use a theorem from
Descriptive Set Theory saying that a function is Borel if and only if its graph is Borel.
Remark: There is basically nothing to do here, I just want you to absorb the definitions.

Theorem 5 (Feldman–Moore). Every CBER E is an orbit equivalence relation of a Borel action
of a countable group. Moreover, this group can be taken to be generated by involutions2. In fact,
there are Borel involutions γn : X→ X, n ∈N, such that E =

⋃
n∈Ngraph(γn).

5. Let E be a CBER on a standard Borel space X.

(a) Show that the involutions γn in the Feldman–Moore theorem can be taken to be
pairwise “disjoint”, by which we mean that for all n ,m, graph(γn)∩ graph(γm) ⊆
IdX

..= {(x,x) : x ∈ X}.
(b) Prove that the Feldman–Moore theorem (the “in fact” part) is equivalent to the

statement that E admits a proper countable Borel edge-colouring, i.e. there is a
Borel function c : E→N such that the values of c on adjacent edges (x,y), (y,z) are
nonequal.

Hint: When going from an edge-colouring to involutions, use that a function is
Borel if and only if its graph is a Borel set.

Definition 6. Let E be a CBER on a standard Borel space X. A set M ⊆ X is called a
complete E-section if it intersects every E-class. Call E aperiodic if each E-class is infinite.

Lemma 7 (Vanishing markers). Any aperiodic CBER E admits a vanishing3 sequence (Mn)n∈N
of Borel complete E-sections.

Remark 8. It would have been wonderful if we could choose a single point from each
E-class, but such sets (given by Axiom of Choice) are typically not measurable. The next
best thing (a poor person’s Axiom of Choice) is a “small” complete E-section; indeed, the
sets Mn for large enough n would have to be “small” since they eventually vanish. We refer
to it as a marker set because it provides us with a “sparse” set of starting points/markers
for algorithms that we can run locally on all E-classes at the same time, and the collective
outcome would still be Borel.

2An involution is a group element whose inverse is itself, i.e. whose square is the identity.
3A sequence of sets is called vanishing if it is decreasing and the intersection is empty.
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6. Follow the steps below to prove the vanishing markers lemma (Lemma 7).

(i) Suppose WLOG that X = [0,1], and let ℓ : X → X map each x to the least limit
point of [x]E. Note that ℓ is E-invariant (i.e. constant on each E-class), although
many different E-classes might choose the same limit point.

(ii) Use the Feldman–Moore theorem to show that the map ℓ is Borel.

(iii) Let Mn
..= {x ∈ X : 0 < |x − ℓ(x)| < 2−n}. The sequence (Mn) works.
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