HOMEWORK 2 Math 594/740: Topics in Ergodic... Due: Mar 21 (Mon)

Definition 1. Let Γ be a countable semigroup (e.g. \mathbb{N} or \mathbb{Z}) and let $\Gamma \curvearrowright (X, \mu)$ be a (right) pmp Borel action on a standard probability space. This induces a (left) action on of Γ on $L^2(X, \mu)$ by isometries $\gamma \cdot f(x) := f(x\gamma)$ (*Koopman representation*). We call $f \in L^2(X, \mu)$ almost periodic for this action if $\Gamma \cdot f := \{\gamma \cdot f : \gamma \in \Gamma\}$ is precompact¹ in $L^2(X, \mu)$.

1. Let *T* be a pmp transformation on (X, μ) ; in other words, we have a pmp action of \mathbb{N} . In class we proved that if *T* is weakly mixing then the only almost periodic functions in $L^2(X, \mu)$ are constants. Give a slightly cleaner proof of this using the equivalent definition of weak mixing where we take the usual limit (not that of averages) but we avoid a density 0 set.

Definition 2. Call a subset *S* of a countable group *G* syndetic if there is a finite subset $F \subseteq \Gamma$ such that $FS = \Gamma$; for $\Gamma := \mathbb{Z}$, this just means that *S* has bounded gaps.

2. Let $\Gamma \curvearrowright (X, \mu)$ be a pmp action of a countable group Γ . Prove that $f \in L^2(X, \mu)$ is almost periodic if and only if for each $\varepsilon > 0$, the set $\{\gamma \in \Gamma : \|\gamma \cdot f - f\|_2 < \varepsilon\}$ is syndetic.

Theorem 3 (Furstenberg Multiple Recurrence). Let $\mathbb{Z} \curvearrowright (X, \mu)$ be a pmp action, where 1 acts via the transformation T. For any $k \ge 1$ and any non-negative function $f \in L^{\infty}(X, \mu)$ with $\int_X f d\mu > 0$, there is $d \ge 1$ such that $\int_X f(T^d f)(T^{2d} f)\dots(T^{(k-1)d} f)d\mu > 0$. In particular, taking $f := \mathbb{1}_A$ for a measurable set $A \subseteq X$, we get $\mu(A \cap T^{-d}A \cap T^{-2n}A \cap \dots \cap T^{-(k-1)d}A) > 0$.

3. Let $\mathbb{Z} \curvearrowright (X, \mu)$ be a pmp action, where 1 acts via the transformation *T*. Follow the steps below to prove the Furstenberg Multiple Recurrence theorem assuming *f* is almost periodic.

Assume without loss of generality that $||f||_{\infty} = 1$. Fix $\varepsilon > 0$ (to be specified later) and let $d \ge 1$ be such that $||T^d f - f||_2 < \varepsilon$ (there is a syndetic set of such *d*, remember?)

- (a) Show that for every j = 0, ..., k 1, $||T^{jd}f f||_2 < k\varepsilon$. In particular, $||T^{jd}f f||_1 < k\varepsilon$.
- (b) Realize that for every $g \in L^{\infty}(X, \mu)$, pointwise multiplication by g is a Lipschitz operator, more precisely, for all $h \in L^1(X, \mu)$, $||gh|| \leq ||g||_{\infty} ||h||_1$.
- (c) Prove by induction on k that $||f(T^d f)(T^{2d} f)...(T^{(k-1)d} f) f^k||_1 \le O_k(\varepsilon)$, where $O_k(\varepsilon)$ means it is $C_k\varepsilon$, where C_k is a constant depending only on k.

HINT: Apply triangle inequality to $||f(T^d f)(T^{2d} f)...(T^{(k-1)d} f) - f^k||_1$ with the intermediate term $f(T^d f)(T^{2d} f)...(T^{(k-2)d} f)f$.

¹Has compact closure. Equivalently, admits finite ε -nets.

(d) Conclude that $\int_X f(T^d f)(T^{2d} f) \dots (T^{(k-1)d} f d\mu = \int_X f^k + O_k(\varepsilon)$, and deduce the theorem.

Definition 4. A *countable Borel equivalence relation* (*CBER*) E on a standard Borel space X is an equivalence relation that is Borel (viewed as a subset of X^2) and each E-class is countable.

4. Let $\Gamma \curvearrowright X$ be a Borel action of a countable group Γ on a standard Borel space X. Verify that its orbit equivalence relation E_{Γ} is a CBER. You may use a theorem from Descriptive Set Theory saying that a function is Borel if and only if its graph is Borel. REMARK: There is basically nothing to do here, I just want you to absorb the definitions.

Theorem 5 (Feldman–Moore). Every CBER E is an orbit equivalence relation of a Borel action of a countable group. Moreover, this group can be taken to be generated by involutions². In fact, there are Borel involutions $\gamma_n : X \to X$, $n \in \mathbb{N}$, such that $E = \bigcup_{n \in \mathbb{N}} \operatorname{graph}(\gamma_n)$.

- 5. Let *E* be a CBER on a standard Borel space *X*.
 - (a) Show that the involutions γ_n in the Feldman–Moore theorem can be taken to be pairwise "disjoint", by which we mean that for all $n \neq m$, graph $(\gamma_n) \cap$ graph $(\gamma_m) \subseteq$ Id_X := { $(x, x) : x \in X$ }.
 - (b) Prove that the Feldman–Moore theorem (the "in fact" part) is equivalent to the statement that *E* admits a proper countable Borel edge-colouring, i.e. there is a Borel function $c : E \to \mathbb{N}$ such that the values of *c* on adjacent edges (x, y), (y, z) are nonequal.

HINT: When going from an edge-colouring to involutions, use that a function is Borel if and only if its graph is a Borel set.

Definition 6. Let *E* be a CBER on a standard Borel space *X*. A set $M \subseteq X$ is called a *complete E-section* if it intersects every *E*-class. Call *E aperiodic* if each *E*-class is infinite.

Lemma 7 (Vanishing markers). Any aperiodic CBER E admits a vanishing³ sequence $(M_n)_{n \in \mathbb{N}}$ of Borel complete E-sections.

Remark 8. It would have been wonderful if we could choose a single point from each *E*-class, but such sets (given by Axiom of Choice) are typically not measurable. The next best thing (a poor person's Axiom of Choice) is a "small" complete *E*-section; indeed, the sets M_n for large enough *n* would have to be "small" since they eventually vanish. We refer to it as a *marker set* because it provides us with a "sparse" set of starting points/markers for algorithms that we can run locally on all *E*-classes at the same time, and the collective outcome would still be Borel.

²An *involution* is a group element whose inverse is itself, i.e. whose square is the identity.

³A sequence of sets is called *vanishing* if it is decreasing and the intersection is empty.

- 6. Follow the steps below to prove the vanishing markers lemma (Lemma 7).
 - (i) Suppose WLOG that X = [0, 1], and let $\ell : X \to X$ map each x to the least limit point of $[x]_E$. Note that ℓ is *E*-invariant (i.e. constant on each *E*-class), although many different *E*-classes might choose the same limit point.
 - (ii) Use the Feldman–Moore theorem to show that the map ℓ is Borel.
 - (iii) Let $M_n := \{x \in X : 0 < |x \ell(x)| < 2^{-n}\}$. The sequence (M_n) works.