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HoMEwoORK 2 Math 594/740: Topics in Ergodic... Due: Mar 21 (Mon)

Definition 1. Let I be a countable semigroup (e.g. IN or Z) and letI' ~ (X, u) be a (right)
pmp Borel action on a standard probability space. This induces a (left) action on of I on
L%(X, p) by isometries y - f(x) := f(xy) (Koopman representation). We call f € L*(X, u) almost
periodic for this action if - f := {y - f : ¥ € T} is precompact! in L(X, u).

1. Let T be a pmp transformation on (X, y#); in other words, we have a pmp action of IN.
In class we proved that if T is weakly mixing then the only almost periodic functions
in L?(X, p) are constants. Give a slightly cleaner proof of this using the equivalent
definition of weak mixing where we take the usual limit (not that of averages) but we
avoid a density O set.

Definition 2. Call a subset S of a countable group G syndetic if there is a finite subset
F CT such that FS =T; for I := Z, this just means that S has bounded gaps.

2. LetT ~ (X, ) be a pmp action of a countable group I'. Prove that f € L>(X, p) is almost
periodic if and only if for each ¢ > 0, the set {y €' : ||y - f — f||, < €} is syndetic.

Theorem 3 (Furstenberg Multiple Recurrence). Let Z ~ (X, p) be a pmp action, where 1
acts via the transformation T. For any k > 1 and any non-negative function f € L*(X, p) with

>0, thereis d > 1 such that - > 0. In particular, takin
S here is d hthat [ f(TAf)(T2f)..(T* D f)dp> 0. In particular, taking
f =1 for a measurable set AC X, we get u((ANTPANT2"An-.-.nT-k-1dA) > 0,

3. Let Z ~ (X, u) be a pmp action, where 1 acts via the transformation T. Follow the steps
below to prove the Furstenberg Multiple Recurrence theorem assuming f is almost
periodic.

Assume without loss of generality that ||f||,, = 1. Fix € > 0 (to be specified later) and
let d > 1 be such that ||Tdf — fll, < € (there is a syndetic set of such d, remember?)

(a) Show that for every j =0,...,k—1, || T/ f — fl|, < ke. In particular, ||T/ f — f||; < ke.

(b) Realize that for every g € L™(X, u), pointwise multiplication by g is a Lipschitz
operator, more precisely, for all h € LY(X, u), [ghl| < lIglleollPll; -

(c) Prove by induction on k that ||[f(T?f)(T?¢f)...(T* D f) - k||, < Ok(e), where
Og(€) means it is Cye, where Cy, is a constant depending only on k.
Hint: Apply triangle inequality to ||f(Tf)(T?4f)...(T*D4f) - k||, with the
intermediate term f(T?f)(T?f)...(T*k=24£)f.

Has compact closure. Equivalently, admits finite e-nets.
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(d) Conclude that (T4 )T f).. (T*VA fdy = k1 Oy (¢), and deduce the theo-
X H=Jx
rem.

Definition 4. A countable Borel equivalence relation (CBER) E on a standard Borel space
X is an equivalence relation that is Borel (viewed as a subset of X?) and each E-class is
countable.

4. Let I' ~ X be a Borel action of a countable group I' on a standard Borel space X.
Verify that its orbit equivalence relation Er is a CBER. You may use a theorem from
Descriptive Set Theory saying that a function is Borel if and only if its graph is Borel.

Remark: There is basically nothing to do here, I just want you to absorb the definitions.

Theorem 5 (Feldman—Moore). Every CBER E is an orbit equivalence relation of a Borel action
of a countable group. Moreover, this group can be taken to be generated by involutions®. In fact,
there are Borel involutions y, : X — X, n € N, such that E = J, e graph(y,,).

5. Let E be a CBER on a standard Borel space X.

(a) Show that the involutions y,, in the Feldman—Moore theorem can be taken to be
pairwise “disjoint”, by which we mean that for all n = m, graph(y,) N graph(y,,) €
Idy :={(x,x): x € X}.

(b) Prove that the Feldman—-Moore theorem (the “in fact” part) is equivalent to the
statement that E admits a proper countable Borel edge-colouring, i.e. there is a
Borel function c : E — IN such that the values of c on adjacent edges (x,v),(y,z) are
nonequal.

Hint: When going from an edge-colouring to involutions, use that a function is
Borel if and only if its graph is a Borel set.

Definition 6. Let E be a CBER on a standard Borel space X. A set M C X is called a
complete E-section if it intersects every E-class. Call E aperiodic if each E-class is infinite.

Lemma 7 (Vanishing markers). Any aperiodic CBER E admits a vanishing3 sequence (M) ,eN
of Borel complete E-sections.

Remark 8. It would have been wonderful if we could choose a single point from each
E-class, but such sets (given by Axiom of Choice) are typically not measurable. The next
best thing (a poor person’s Axiom of Choice) is a “small” complete E-section; indeed, the
sets M,, for large enough n would have to be “small” since they eventually vanish. We refer
to it as a marker set because it provides us with a “sparse” set of starting points/markers
for algorithms that we can run locally on all E-classes at the same time, and the collective
outcome would still be Borel.

2An involution is a group element whose inverse is itself, i.e. whose square is the identity.

3a sequence of sets is called vanishing if it is decreasing and the intersection is empty.
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6. Follow the steps below to prove the vanishing markers lemma (Lemma 7).

(i) Suppose WLOG that X =[0,1], and let £ : X — X map each x to the least limit
point of [x]g. Note that ¢ is E-invariant (i.e. constant on each E-class), although
many different E-classes might choose the same limit point.

(ii) Use the Feldman-Moore theorem to show that the map ¢ is Borel.

(iii) Let M,, :={x € X : 0 < |x — €(x)| < 27"}. The sequence (M,,) works.



