HOMEWORK 1 Math 594/740: Topics in Ergodic... Due: Feb 18

- **1.** Let λ denote the Lebesgue measure on [0, 1) and identify $S^1 = \mathbb{R}/\mathbb{Z} = [0, 1)$.
 - (a) Prove the following slight strengthening of the 99% lemma: For every positivelymeasured set $A \subseteq [0,1)$ and $\varepsilon > 0$, there are *arbitrarily small* open intervals $I \subseteq [0,1)$ such that $\frac{\lambda(A \cap I)}{\lambda(I)} > 1 - \varepsilon$.
 - (b) Present a direct (without contradiction) proof that irrational rotation is ergodic by showing that the measure of an invariant positively-measured set is arbitrarily close to 1.
- **2.** Let *T* be a pmp transformation on a standard probability space (X, μ) . Prove that the following are equivalent:
 - (1) $\mu(A \cap T^{-n}B) \to \mu(A)\mu(B)$ as $n \to \infty$ for all sets A, B in some generating¹ algebra $\mathcal{A} \subseteq \mathcal{B}(X)$.
 - (2) *T* is mixing, $\mu(A \cap T^{-n}B) \to \mu(A)\mu(B)$ as $n \to \infty$ for all measurable sets $A, B \subseteq X$.
 - (3) For any $f,g \in L^2(X,\mu)$, $\langle f,T^ng \rangle \to \int f d\mu \int g d\mu$ as $n \to \infty$, where $\langle f,g \rangle$ denotes the usual inner product $\int f g d\mu$.
- **3.** Let $T : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ be the *odometer* transformation, i.e. *T* maps a binary sequence *x* to the binary sequence obtained by thinking of *x* as a the binary representation of a number written in reverse and adding 1 to it, carrying it over if necessary. For example, $T(00110...) \coloneqq 10110..., T(11101...) \coloneqq 00011...,$ and by convention, $T(11111...) \coloneqq 00000...$ Let μ be the fair coin-flip measure on $2^{\mathbb{N}}$, i.e. $\mu \coloneqq \nu^{\mathbb{N}}$, where $\nu \coloneqq \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$. Recall that the standard basic open sets of the product topology are of the form

 $[s] := \{ x \in 2^{\mathbb{N}} : x|_{|s|} = s \} \text{ for } s \in 2^{<\mathbb{N}}.$

- (a) Prove the 99% lemma for μ, namely: for any positively-measure A ⊆ 2^N, there is a basic clopen set [s] such that ≥ 99% of [s] is A, i.e. μ(A∩[s]) ≥ 0.99.
- (b) Observe that for any $s,t \in 2^{<\mathbb{N}}$ of the same length, there is a $k \in \mathbb{Z}$ such that $T^k(sx) = tx$ for all $x \in 2^{\mathbb{N}}$, where by sx we meant the sequence s followed by x. In other words, powers of T can replace the beginning of an infinite sequence with any finite string.
- (c) Deduce that *T* is ergodic (with respect to μ).
- (d) Let $c : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ be the *conjugation* map, i.e. it maps a binary sequence x to a sequence obtained by switching the 0s of x to 1s and vice versa. Let $E := E_s \vee E_T$, i.e. E is the smallest equivalence relation containing E_s and E_T . Note that each E-class (except for that of 000...) contains exactly two E_T -classes. Prove that there

¹By a *generating collection* of sets we mean one that generates the Borel σ -algebra of X.

is no measurable E_T -invariant set A that intersects every E-class in exactly one E_T -class; in other words, it is impossible to measurably choose one E_T -class out of every E-class.

- **4.** Let *T* be a pmp transformation on a standard probability space (X, μ) . Prove that the following are equivalent:
 - (1) T is ergodic.
 - (2) $\lim_{n\to\infty} A_n^T f = \int_X f d\mu$ a.e. for each $f \in L^1(X, \mu)$.
 - (3) $\lim_{n\to\infty} A_n^T \mathbb{1}_U = \mu(U)$ a.e. for each set *U* in some generating algebra $\mathcal{A} \subseteq \mathcal{B}(X)$.
 - (4) Same as (2) but the convergence is in L^1 -norm, i.e. $\lim_{n\to\infty} ||A_n^T \mathbb{1}_U \mu(U)||_1 = 0$.
 - (5) $\lim_{n\to\infty} ||A_n^T \mathbb{1}_B \mu(B)||_1 = 0$ for each measurable set $B \subseteq X$.

REMARK: I don't know a direct way of proving $(3) \Rightarrow (2)$ without going through the full pointwise ergodic theorem. Do you?

- **5.** Let (Y, ν) be a standard probability space and let $X := Y^{\mathbb{N}}$ and $\mu := \nu^{\mathbb{N}}$. Let $s : X \to X$ denote the shift transformation, i.e. $(x_n) \mapsto (x_{n+1})$.
 - (a) Prove that *s* is mixing, hence ergodic. (The proof is nearly identical to that for Y := 2 given in class.)
 - (b) Take $Y := \mathbb{R}$ and let ν be any Borel probability measure on \mathbb{R} . Applying the pointwise ergodic theorem to *s* with the function $f := \text{proj}_0$ (i.e. the projection onto the 0th coordinate $(x_n) \mapsto x_0$), deduce the law of large numbers.

HINT: The only task here is to translate the probabilistic terminology (e.g. identically distributed random variables) to that of measure theory.

- 6. Prove the pointwise ergodic theorem for a general (not necessarily ergodic) pmp transormation *T*, i.e. with the conditional expectation in lieu of $\int f d\mu$.
- 7. [*Optional*] Let *T* be a pmp transformation on a standard probability space (X, μ) . Prove that if $x \mapsto v_x : X \to P(X)$ is an *T*-ergodic decomposition of μ , then for each $f \in L^1(X, \mu)$ and a.e. $x \in X$, we have $E(f|\mathcal{B}_T)(x) = \int_X f dv_x$.