Math 595: Descriptive Set Theory Номеwork 4 Due: Nov 15-16

1. Let *G* be a Polish group and let $H \leq G$ be a subgroup. Prove that *H* is Polish iff *H* is closed.

HINT: Consider *H* inside \overline{H} . What is the Baire category status (meager/nonmeager/ comeager) of *H* in (the relative topology of) \overline{H} ? If $H \subsetneq \overline{H}$, look at the cosets.

2. Let Γ be a group acting on a Polish space X by homeomorphisms (i.e. each element $\gamma \in \Gamma$ acts as a homeomorphism of X). A set $A \subseteq X$ is called invariant if $\gamma A = A$ for all $\gamma \in \Gamma$. The action $\Gamma \frown X$ is called *generically ergodic* if every invariant Baire measurable set $A \subseteq X$ is either meager or comeager. For a set $A \subseteq X$, denote by $[A]_{\Gamma}$ the saturation of A, namely $[A]_{\Gamma} = \bigcup_{\gamma \in \Gamma} \gamma A$.

Prove that the following are equivalent:

- (1) $\Gamma \curvearrowright X$ is generically ergodic.
- (2) Every invariant nonempty open set is dense.
- (3) For comeagerly many $x \in X$, the orbit $[x]_{\Gamma}$ is dense.
- (4) There is a dense orbit.
- (5) For every nonempty open sets $U, V \subseteq X$, there is $\gamma \in \Gamma$ such that $(\gamma U) \cap V \neq \emptyset$.

HINT: For (2) \Rightarrow (3), take a countable basis $\{U_n\}_{n \in \mathbb{N}}$ and consider $\bigcap_n [U_n]_{\Gamma}$.

- **3.** Show that if *X*, *Y* are second countable Baire spaces, so is $X \times Y$.
- 4. [*Optional*] Show that the Kuratowski–Ulam theorem fails if A is not Baire measurable by constructing a nonmeager set $A \subseteq \mathbb{R}^2$ (using AC) so that no three points of A are on a straight line. Construct this set A following these steps:
 - (i) Note that there are only continuum many F_{σ} subsets of \mathbb{R}^2 , so take a transfinite enumeration $(F_{\xi})_{\xi<2} \aleph_0$ of all *meager* F_{σ} sets.
 - (ii) Aim at recursively constructing a sequence $(a_{\xi})_{\xi < 2^{\aleph_0}}$ of points in \mathbb{R}^2 by transfinite recursion so that for each $\xi < 2^{\aleph_0}$, $\{a_{\lambda} : \lambda \leq \xi\} \not\subseteq F_{\xi}$ and no three of the points in $\{a_{\lambda} : \lambda \leq \xi\}$ lie on a straight line.
 - (iii) To see that a choice of α_{ξ} is possible, note that $\{a_{\lambda} : \lambda < \xi\}$ generates $< 2^{\aleph_0}$ many lines and find (using Kuratowski–Ulam, ironically) a vertical line in \mathbb{R}^2 disjoint from $\{a_{\lambda} : \lambda < \xi\}$ and such that F_{ξ} is meager on that line.
- **5.** Prove that in any topological group *G*, every nonmeager Baire measurable subgroup $H \leq G$ is actually clopen! In particular, if *G* is Polish and $H \leq G$ is Baire measurable, then *H* is clopen if and only if it has countable index in *G*.

6. Prove that if f: (ℝ, +) → (ℝ, +) is a Baire measurable group homomorphism, then f is just a multiplication by a constant, i.e. f(x) = f(1)x for all x ∈ ℝ.

HINT: First show this for integers, then for rationals, etc.

- 7. For Polish spaces X, Y, a function $f : X \to Y$ is called *universally measurable* if the f-preimage of each Borel subset of Y is universally measurable. Prove that universally measurable functions are closed under composition, i.e. for Polish spaces X, Y, Z, if $f : X \to Y$ and $g : Y \to Z$ are universally measurable, then so is $g \circ f$.
- 8. Prove that the translation action of \mathbb{Q} on \mathbb{R} is generically ergodic and ergodic with respect to Lebesgue measure.
- **9.** Let μ be any Bernoulli (coin-flip) measure on $2^{\mathbb{N}}$.
 - (a) Prove the **99% lemma** for μ , namely: any measurable set $B \subseteq 2^{\mathbb{N}}$ of positive measure admits a basic clopen set $[s], s \in 2^{<\mathbb{N}}$, whose 99% is *B*. Show that [s] can be taken to be arbitrarily μ -small (equivalently, *s* can be taken to be arbitrarily long).
 - (b) Deduce that the Hamming graph (equivalently, the corresponding group action $\bigoplus_{n \in \mathbb{N}} \mathbb{Z}/2\mathbb{Z} \frown 2^{\mathbb{N}}$) is μ -ergodic.
 - (c) Also observe that the Hamming graph (equivalently, the same group action as in (b)) is generically ergodic.

10. Let $C_0 := \{(x_n)_{n \in \mathbb{N}} \in [0, 1]^{\mathbb{N}} : \lim_n x_n = 0\}$, and show that C_0 is in $\Pi_3^0(X)$.