Math 595: Topics on CBERs HOMEWORK 2 Due: Mar 28, 5–6:15pm, in 443AH

1. The $\{1,2,3,\infty\}$ Theorem. Let X be a standard Borel space and let $f: X \to X$ be a Borel function. Let $G_f := \text{Graph}(f)$, so G_f is a Borel directed graph, possibly with loops (indeed, it could be that f(x) = x for some $x \in X$). A vertex coloring for such a graph is defined by demanding that any two distinct vertices with a directed edge between them get distinct colors. Prove that $\chi_B(G_f) \in \{1,2,3,\aleph_0\}$, following the steps below.

Let E_f denote the connectedness relation of G_f . A set $A \subseteq X$ is called *f*-forward recurrent for $x \in X$ if for infinitely-many $n \in \mathbb{N}$, $f^n(x) \in A$. Say that *f* is periodic at $x \in X$ if there are distinct $m, n \in \mathbb{N}$, $f^m(x) = f^n(x)$. Call *f* aperiodic if it is not periodic at any $x \in X$.

- (i) Firstly, re-realize that $\chi_B(G_f) \leq \aleph_0$, so assume that G_f has a finite Borel (vertex) coloring.
- (ii) Prove that the points at which f is periodic form an E_f -invariant Borel set on which E_f admits a transversal. Thus, this part can be easily colored with 3 colors in a Borel fashion, so we may assume that f is aperiodic.
- (iii) Fix a finite Borel coloring of G_f and observe that for each $x \in X$, one of the colors forms an f-forward recurrent set. Construct a G_f -independent Borel set $A \subseteq X$ that is f-forward recurrent for every $x \in X$.
- (iv) Given such a set A, color G_f with 3 colors in a Borel fashion.

HINT: A is one of the colors.

- 2. Maybe something fun, like Stravinsky, say "Infernal Dance of Kashchei and His Subjects" from Firebird conducted by Pierre Boulez (or Esa-Pekka Salonen's version).
- **3.** Let *E* be a CBER on a standard measure space (X, μ) . Recall that [[E]] denotes the set of all Borel partial injections $\pi: X \to X$ such that $\pi(x) E x$ for all $x \in \text{dom}(\pi)$. We denote by [E] the subset of [[E]] of all entire functions, i.e., those whose domain is *X*.

Prove that the following are equivalent:

- (1) *E* is measure preserving, i.e., for every $\pi \in [[E]], \mu(\operatorname{dom}(\pi)) = \mu(\operatorname{im}(\pi)).$
- (2) Every $\gamma \in [E]$ is measure preserving.
- (3) Every Borel action $\Gamma \curvearrowright^a X$ of a countable group Γ with $E_a \subseteq E$ is measure preserving.
- (4) There is a Borel measure preserving action $\Gamma \curvearrowright^a X$ of a countable group Γ with $E_a = E$.
- 4. Let X be Polish and let E be an analytic equivalence relation on X.
 - (a) Show that for an analytic set A, its saturation $[A]_E := \{x \in X : \exists y \in A(x E y)\}$ is also analytic.

(b) (Burgess) Let $A, B \subseteq X$ be disjoint *E*-invariant analytic sets (i.e., $[A]_E = A$, $[B]_E = B$). Prove that there is an *E*-invariant Borel set *D* separating *A* and *B*, i.e., $D \supseteq A$ and $D \cap B = \emptyset$.

5. Prisoners and hats

- (a) Nonsmoothness of \mathbb{E}_0 . This question illustrates the nonsmoothness of \mathbb{E}_0 , more particularly, how having a selector for \mathbb{E}_0 (provided by AC) causes unintuitive things. *Problem.* ω -many prisoners are sentenced to death, but they can get out under the following condition. On the day of the execution they will be lined up, i.e., enumerated $(p_n)_{n \in \mathbb{N}}$, so that everybody can see everybody else but themselves. Each of the prisoners will have a red or blue hat put on them, but he/she won't be told which color it is (although they can see the other prisoners' hats). On command, all the prisoners at once make a guess as to what color they think their hat is. If all but finitely many prisoners guess correctly, they all go home free; otherwise all of them are executed. The good news is that the prisoners think of a plan the day before the execution, and indeed, all but finitely many prisoners guess correctly the next day, so everyone is saved. How do they do it?
- (b) Non-2-colorability of the Hamming graph. This question illustrates that the Hamming graph H on $2^{\mathbb{N}}$ does not admit a reasonable 2-coloring. The Hamming graph His defined by putting an edge between two binary sequences if they differ by exactly one bit. Thus, H is a cousin of G_0 and $E_H = \mathbb{E}_0$.

Problem. ω -many prisoners are sentenced to death, but they can get out under the following condition. On the day of the execution they will be lined up, i.e., enumerated $(p_n)_{n \in \mathbb{N}}$, so that everybody can see everybody else but themselves. Each of the prisoners will have a red or blue hat put on them, but he/she won't be told which color it is (although they can see the other prisoners' hats). On command, each prisoner, one-by-one (starting from p_0 , then p_1 , then p_2 , etc.), makes a guess as to what color they think their hat is. Whoever guesses right, goes home free. The good news is that the prisoners think of a plan the day before the execution, so that at most one prisoner is executed. How do they do it?

- 6. Odometer. Let $X_0 = \{x \in 2^{\mathbb{N}} : \forall^{\infty} n \ x(n) = 0\}, X_1 = \{x \in 2^{\mathbb{N}} : \forall^{\infty} n \ x(n) = 1\}$, and put $X = 2^{\mathbb{N}} \setminus (X_0 \cup X_1)$. Note that X_0 and X_1 are \mathbb{E}_0 -classes, so all we did is throwing away from $2^{\mathbb{N}}$ two \mathbb{E}_0 -classes. Define a continuous action of \mathbb{Z} on X so that the induced orbit equivalence relation $E_{\mathbb{Z}}$ is exactly $\mathbb{E}_0|_X$.
- 7. Something new I learnt last week: Terry Riley's "The Wheel and Mythic Birds Waltz¹". (There has to be a Kronos Quartet recording, but I can't find it, please let me know if you can.)
- 8. Universality of the shift action. Let $\Gamma \curvearrowright X$ be a Borel action of a countable group Γ on a Polish space X. Show that there is a Borel equivariant² embedding $f: X \hookrightarrow (2^{\mathbb{N}})^{\Gamma}$,

¹Greg, I like this waltz!

²A map is called *equivariant* if it commutes with the action, i.e., $\gamma \cdot f(x) = f(\gamma \cdot x)$, for $x \in X$.

where $\Gamma \curvearrowright (2^{\mathbb{N}})^{\Gamma}$ by shift as follows: $\gamma \cdot y(\delta) = y(\delta \gamma)$, for $\gamma, \delta \in \Gamma$, $y \in (2^{\mathbb{N}})^{\Gamma}$. In particular, f is a Borel reduction of the induced orbit equivalence relations.

- **9.** For any Polish space X, let $\mathbb{E}_0(X)$ denote the equivalence relation of eventual equality on $X^{\mathbb{N}}$, i.e., for $x, y \in X^{\mathbb{N}}$, $x \mathbb{E}_0(X) y$ if and only if for all large enough $n \in \mathbb{N}$, x(n) = y(n).
 - (a) For $\ell : \mathbb{N} \to \mathbb{N}$, let $\mathbb{E}_0(\ell)$ be the restriction of $\mathbb{E}_0(\mathbb{N})$ to $\mathcal{N}_{\leq \ell} := \{x \in \mathcal{N} : x(n) \leq \ell(n)\}$. Show that $\mathbb{E}_0(\ell) \sqsubseteq_c \mathbb{E}_0$
 - (b) More generally, prove that $\mathbb{E}_0(\mathbb{N}) \sqsubseteq_c \mathbb{E}_0$.