Last update: 10:29pm, Nov 3.

Math 574: DST HOMEWORK 4 Due: Nov 5 in problem session

- 1. Let $X = \mathbb{I}^{\mathbb{N}}$ and put $C_0 = \{(x_n)_{n \in \mathbb{N}} : x_n \to 0\}$. Show that C_0 is in $\Pi_3^0(X)$.
- 2. A class Γ of sets is called *self-dual* if it is closed under complements, i.e. $\neg \Gamma = \Gamma$. Show that if Γ is a self-dual class of sets in topological spaces that is closed under continuous preimages, then for any topological space *X* there does not exist an *X*-universal set for $\Gamma(X)$. Conclude that neither the class $\mathcal{B}(X)$ of Borel sets, nor the classes $\Delta_{\mathcal{E}}^{0}(X)$, can have *X*-universal sets.
- 3. Letting *X* be a separable metrizable space and $\lambda < \omega_1$ be a limit ordinal, put

$$\mathbf{\Omega}^0_{\lambda}(X) := \bigcup_{\xi < \lambda} \Sigma^0_{\xi}(X) \ (= \bigcup_{\xi < \lambda} \mathbf{\Delta}^0_{\xi}(X) = \bigcup_{\xi < \lambda} \mathbf{\Pi}^0_{\xi}(X)).$$

(a) Let *Y* be an uncountable Polish space and prove that there exists a set $P \in \Delta^0_{\lambda}(Y \times X)$ that parameterizes $\Omega^0_{\lambda}(X)$.

HINT: First construct such a set for $Y = \mathbb{N} \times C$. Then conclude it for Y = C using the fact that the following functions are continuous: $()_0 : C \to \mathbb{N}$ and $()_1 : C \to C$ defined for $y \in C$ by

$$y = 1^{(y)_0} 0^{(y)_1}$$

Finally, conclude the statement for any *Y* using the perfect set property.

- (b) Conclude that if X is uncountable Polish, then $\Delta^0_{\lambda}(X) \supseteq \mathbf{\Omega}^0_{\lambda}(X)$.
- 4. (a) Show that any Polish space admits a finer Polish topology that is zero-dimensional and has the same Borel sets, i.e. for a given Polish space (X, \mathcal{T}) , there exists a zero-dimensional Polish topology $\mathcal{T}_0 \supseteq \mathcal{T}$ such that $\mathcal{B}(\mathcal{T}_0) = \mathcal{B}(\mathcal{T})$.
 - (b) Let *G* be a countable group and consider a Borel action of *G* on a Polish space (X, \mathcal{T}) , i.e. each $g \in G$ acts as a Borel automorphism of *X*. Prove that there exists a Polish topology $\mathcal{T}_0 \supseteq \mathcal{T}$ with $\mathcal{B}(\mathcal{T}_0) = \mathcal{B}(\mathcal{T})$ that makes the action of *G* continuous. Moreover, \mathcal{T}_0 can be taken to be zero-dimensional.
- 5. Let *X*, *Y* be topological spaces and let $proj_X : X \times Y \to X$ be the projection function. Prove the following statements:
 - (a) proj_X is continuous and open.
 - (b) proj_X does not in general map closed sets to closed sets, even for $X = Y = \mathbb{R}$. REMARK: We will see shortly in the course that for certain $Y = \mathcal{N}$, the projection of a closed set may not even be Borel in general.
 - (c) For $X = Y = \mathbb{R}$, proj_X maps closed sets to σ -compact (and hence F_{σ}) sets. More generally, images of F_{σ} sets under continuous functions from σ -compact to Hausdorff spaces are F_{σ} .

- (d) **Tube lemma:** If *Y* is compact, then proj_X indeed maps closed sets to closed sets. HINT: It is perhaps tempting to use sequences, but this would only work for first-countable spaces. Instead, use the open cover definition of compact and show that for closed $F \subseteq X \times Y$, every point $x \in X \setminus \text{proj}_X(F)$ has an open neighborhood disjoint from $\text{proj}_X(F)$. The "correct" solution should use nothing but definitions.
- 6. Let X be Polish and let E be an analytic equivalence relation on X, i.e. E is an analytic subset of X^2 .
 - (a) Show that for an analytic set A, its saturation $[A]_E := \{x \in X : \exists y \in A(x E y)\}$ is also analytic.
 - (b) Let $A, B \subseteq X$ be disjoint *E*-invariant analytic sets (i.e., $[A]_E = A$, $[B]_E = B$). Prove that there is an *E*-invariant Borel set *D* separating *A* and *B*, i.e., $D \supseteq A$ and $D \cap B = \emptyset$.