Math 574: DST

Homework 2

Due: Oc

Due: Oct 3 in problem session

- **1.** Let (X, d) be a metric with $d \leq 1$. For $(K_n)_n \subseteq \mathcal{K}(X) \setminus \{\emptyset\}$ and nonempty $K \in \mathcal{K}(X)$:
 - (a) $\delta(K, K_n) \to 0 \Longrightarrow K \subseteq \underline{\text{Tlim}}_n K_n;$
 - (b) $\delta(K_n, K) \to 0 \Rightarrow K \supseteq \overline{\mathrm{Tlim}}_n K_n$.

In particular, $d_H(K_n, K) \rightarrow 0 \Rightarrow K = T \lim_n K_n$. Show that the converse may fail.

Op1.(Optional) Let *X* be metrizable.

- (a) The relation " $x \in K$ " is closed, i.e. { $(x, K) : x \in K$ } is closed in $X \times \mathcal{K}(X)$.
- (b) The relation " $K \subseteq L$ " is closed, i.e. { $(K,L) : K \subseteq L$ } is closed in $\mathcal{K}(X)^2$.
- (c) The map $(K, L) \mapsto K \cup L$ from $\mathcal{K}(X)^2$ to $\mathcal{K}(X)$ is continuous.
- (d) Find a compact X for which the map $(K, L) \mapsto K \cap L$ from $\mathcal{K}(X)^2$ to $\mathcal{K}(X)$ is not continuous.
- 2. Let *X* be a nonempty perfect Polish space and let *Q* be a countable dense subset of *X*. Show that *Q* is F_{σ} but not G_{δ} . In particular, \mathbb{Q} is not Polish (in the relative topology of \mathbb{R}).
- **Op2**.¹ (**Optional**) Show that [0,1] does not admit a countable nontrivial² partition into closed intervals.

HINT: What kind of subset would the endpoints of those intervals form?

- 3. A *topological group* is a group with a topology on it so that group multiplication $(x, y) \rightarrow xy$ and inverse $x \rightarrow x^{-1}$ are continuous functions. Show that a countable topological group is Polish if and only if it is discrete.
- 4. Let *X* be separable metrizable and let

 $\mathcal{K}_p(X) := \{ K \in \mathcal{K}(X) : K \text{ is perfect} \}.$

- (a) Show that $\mathcal{K}_p(X)$ is a G_δ set in $\mathcal{K}(X)$. In particular, if X is Polish, then so is $\mathcal{K}_p(X)$.
- (b) Show that if X is nonempty perfect Polish, then $\mathcal{K}_p(X)$ is dense in $\mathcal{K}(X)$. Conclude that a generic compact subset of X is perfect.
- 5. (a) Let X be a nonempty zero-dimensional Polish space such that all of its compact subsets have empty interior. Fix a complete compatible metric and prove that there is a Luzin scheme $(A_s)_{s \in \mathbb{N}^{<\mathbb{N}}}$ with vanishing diameter and satisfying the following properties:

¹Thanks to Jenna Zomback for sparking this problem.

²A partition \mathcal{P} of a set *X* is *trivial* if $\mathcal{P} = \{X\}$.

- (i) $A_{\emptyset} = X$;
- (ii) A_s is nonempty clopen;
- (iii) $A_s = \bigcup_{i \in \mathbb{N}} A_{s^{\frown}i}$.

HINT: Assuming A_s is defined, cover it by countably many clopen sets of diameter at most $\delta < 1/n$, and choose the δ small enough so that any such cover is necessarily infinite.

- (b) Derive the Alexandrov–Urysohn theorem, i.e. show that the Baire space is the only topological space, up to homeomorphism, that satisfies the hypothesis of (a).
- 6. Let $Y \subseteq \mathbb{R}$ be G_{δ} and such that $Y, \mathbb{R} \setminus Y$ are dense in \mathbb{R} . Show that Y is homeomorphic to $\mathbb{N}^{\mathbb{N}}$. In particular, $\mathbb{R} \setminus \mathbb{Q}$ is homeomorphic to $\mathbb{N}^{\mathbb{N}}$.

Op3.³ (**Optional**)

- (a) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at every irrational but discontinuous at every rational.
- (b) Prove that there is no function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at every rational but discontinuous at every irrational.

HINT: Show that the set of continuity points of any function is G_{δ} .

- 7. A *finite game* on a set A is a game similar to infinite games, but the players play only finitely many steps before the winner is decided. More formally, it is a (possibly infinite) tree $T \subseteq A^{<\mathbb{N}}$ that has no infinite branches, and the set of runs is Leaves(T), so the payoff set is a subset $D \subseteq \text{Leaves}(T)$. Player I wins the run $s \in \text{Leaves}(T)$ of the game iff $s \in D$. Consequently, Player II wins iff $s \in \text{Leaves}(T) \setminus D$.
 - (a) Prove the determinacy of finite games.

HINT: Call a position $s \in T$ determined, if from that point on, one of the players has a winning strategy. Thus, no player has a winning strategy in the beginning iff \emptyset is undetermined. What can you say about extensions of undetermined positions?

- (b) Conclude the determinacy of clopen infinite games. (These are games with runs in $A^{\mathbb{N}}$ and the payoff set a clopen subset of $A^{\mathbb{N}}$.)
- **Op4**.⁴ (**Optional**) Let \mathcal{G} be the so-called *Hamming graph* on $2^{\mathbb{N}}$, namely, there is an edge between $x, y \in 2^{\mathbb{N}}$ exactly when x and y differ by one bit.
 - (a) Prove that \mathcal{G} is has no odd cycles and hence is bipartite (admits a 2-coloring). Pinpoint the use of AC.

³Thanks to Francesco Cellarosi for bringing up the statements of this question to me.

⁴Thanks to Forte Shinko for suggesting this problem.

(b) Fix a coloring $c : 2^{\mathbb{N}} \to 2$ of \mathcal{G} and let $A_i := c^{-1}(i)$ for $i \in \{0, 1\}$. Consider the game where each player plays a finite nonempty binary sequence at each step and a play is the concatenation of those finite sequences, thus an infinite binary sequence. Prove that this game with the payoff set A_0 is not determined by showing that if one of the players had a winning strategy, so would the other one.

HINT: Steal the other player's strategy.