1. Prove that any separable metric space has cardinality at most continuum.

Remark: This is true more generally for first-countable separable Hausdorff topological spaces, but false for general separable Hausdorff topological spaces (try to construct a counter-example).
2. Let X be a second-countable topological space.
(a) Show that X has at most continuum-many open subsets.
(b) (Optional) ${ }^{1}$ Let α, β, γ denote ordinals. A sequence of sets $\left(A_{\alpha}\right)_{\alpha<\gamma}$ is called monotone if it is either increasing (i.e. $\alpha<\beta \Rightarrow A_{\alpha} \subseteq A_{\beta}$, for all $\alpha, \beta<\gamma$) or decreasing (i.e. $\alpha<\beta \Rightarrow A_{\alpha} \supseteq A_{\beta}$, for all $\alpha, \beta<\gamma$); call it strictly monotone, if all of the inclusions are strict.

Prove that any strictly monotone sequence $\left(U_{\alpha}\right)_{\alpha<\gamma}$ of open subsets of X has countable length, i.e. γ is countable.
Hint: Use the same idea as in the proof of (a).
(c) (Optional) ${ }^{1}$ Show that every monotone sequence $\left(U_{\alpha}\right)_{\alpha<\omega_{1}}$ open subsets of X eventually stabilizes, i.e. there is $\gamma<\omega_{1}$ such that for all $\alpha<\omega_{1}$ with $\alpha \geqslant \gamma$, we have $U_{\alpha}=U_{\gamma}$.
Hint: Use the regularity of ω_{1}, i.e. supremum of countably-many countable ordinals is still a countable ordinal.
(d) Conclude that parts (a), (b) and (c) are also true for closed sets.
3. (a) Show that a metric space X is complete if and only if every decreasing sequence of closed sets $\left(B_{n}\right)_{n \in \mathbb{N}}$ with $\operatorname{diam}\left(B_{n}\right) \rightarrow 0$ has nonempty intersection (in fact, $\bigcap_{n \in \mathbb{N}} B_{n}$ is a singleton).
(b) (Optional) Show that the requirement in (a) that diam $\left(B_{n}\right) \rightarrow 0$ cannot be dropped. Do this by constructing a complete metric space that has a decreasing sequence $\left(B_{n}\right)_{n \in \mathbb{N}}$ of closed balls with $\bigcap_{n \in \mathbb{N}} B_{n}=\emptyset$.
Hint: Use \mathbb{N} as the underlying set for your metric space.
4. Prove that every Polish space X admits a linear ordering $<$ that is both G_{δ} and F_{σ} as a subset of X^{2}.
Hint: ${ }^{2}$ Think of the points of X as binary sequences using a countable basis $\left(U_{n}\right)_{n \in \mathbb{N}}$.

[^0]5. Let $T \subseteq A^{<\mathbb{N}}$ be a tree and suppose it is finitely branching. Prove (directly) that [T] is sequentially compact.
6. Let $T \subseteq \mathbb{N}^{<\mathbb{N}}$ be a tree. Define a total ordering $<$ on T such that $<$ is a well-ordering if and only if T doesn't have an infinite branch.
7. Let S, T be trees on sets A, B, respectively. Let $D \subseteq[S]$ be a G_{δ} set and let $f: D \rightarrow[T]$ be a continuous function.
(a) Assuming that $D=[S]$, prove that there is a monotone map $\varphi: S \rightarrow T$ such that $f=\varphi^{*}$.
Hint: For $s \in S$, define $\varphi(s)$ to be the longest $t \in T$ such that $|t| \leqslant|s|$ and $N_{t} \supseteq f\left(N_{s}\right)$, where $N_{s}:=\{x \in[S]: x \supseteq s\}$ and $N_{t}:=\{y \in[T]: y \supseteq t\}$.
(b) (Optional) Letting D be an arbitrary G_{δ} set, prove that there is a monotone map $\varphi: S \rightarrow T$ such that $D=\operatorname{dom}\left(\varphi^{*}\right)$ and $f=\varphi^{*}$.
Hint: Write $D=\pitchfork_{n} U_{n}$, where the U_{n} are open, and in the hint above replace $|s|$ with the largest $n \leqslant|s|$ such that $N_{s} \cap D \subseteq U_{n}$. The case $N_{s} \cap D=\emptyset$ needs a special (yet straightforward) care.
8. Let X be a compact metric space and Y be a separable complete metric space. Let $C(X, Y)$ be the space of continuous functions from X to Y equipped with the uniform metric, i.e. for $f, g \in C(X, Y)$,
$$
d_{u}(f, g)=\sup _{x \in X} d_{Y}(f(x), g(x))
$$

Prove that $C(X, Y)$ is a separable complete metric space, hence Polish.
Hint 1: Proving separability is tricky, so you may want to first prove it for $X=[0,1]$ and $Y=\mathbb{R}$. In the general case (to prove separability), note that by uniform continuity,

$$
C(X, Y)=\bigcup_{n} A_{n, m}
$$

for every $n \in \mathbb{N}$, where

$$
A_{n, m}=\left\{f \in C(X, Y): \forall x, y \in X\left(d_{X}(x, y)<1 / n \Rightarrow d_{Y}(f(x), f(y))<1 / m\right)\right\}
$$

Realize that it is enough to show that for any $n, m \in \mathbb{N}$, there is a countable $B_{n, m} \subseteq A_{n, m}$ such that for any $f \in A_{n, m}$ there is $g \in B_{n, m}$ with $d_{u}(f, g)<3 / m$. Now fix n, m and try to construct $B_{n, m}$; when doing so, don't try to define each function in $B_{n, m}$ by hand as you would maybe do in the case $X=[0,1]$; instead, carefully pick them out of functions in $A_{n, m}$.
Hint 2: This is Theorem 4.19 in Kechris's "Classical Descriptive Set Theory".
9. Show that Hausdorff metric on $\mathcal{K}(X)$ is compatible with the Vietoris topology.

[^0]: ${ }^{1}$ Parts (b) and (c) of Problem 2 are the only questions in the entire course that mention ordinals.
 ${ }^{2}$ Thanks to Jenna Zomback for this.

