Math 574: DST

Homework 1

Due: Sep 17 in the problem session

1. Prove that any separable metric space has cardinality at most continuum.

REMARK: This is true more generally for first-countable separable Hausdorff topological spaces, but false for general separable Hausdorff topological spaces (try to construct a counter-example).

- 2. Let *X* be a second-countable topological space.
 - (a) Show that *X* has at most continuum-many open subsets.
 - (**Optional**)¹ Let α, β, γ denote ordinals. A sequence of sets (A_α)_{α<γ} is called *monotone* if it is either increasing (i.e. α < β ⇒ A_α ⊆ A_β, for all α, β < γ) or decreasing (i.e. α < β ⇒ A_α ⊇ A_β, for all α, β < γ); call it *strictly monotone*, if all of the inclusions are strict.

Prove that any strictly monotone sequence $(U_{\alpha})_{\alpha < \gamma}$ of open subsets of X has countable length, i.e. γ is countable.

HINT: Use the same idea as in the proof of (a).

(c) **(Optional)** ¹ Show that every monotone sequence $(U_{\alpha})_{\alpha < \omega_1}$ open subsets of *X* eventually stabilizes, i.e. there is $\gamma < \omega_1$ such that for all $\alpha < \omega_1$ with $\alpha \ge \gamma$, we have $U_{\alpha} = U_{\gamma}$.

HINT: Use the regularity of ω_1 , i.e. supremum of countably-many countable ordinals is still a countable ordinal.

- (d) Conclude that parts (a), (b) and (c) are also true for closed sets.
- **3.** (a) Show that a metric space X is complete if and only if every decreasing sequence of closed sets $(B_n)_{n \in \mathbb{N}}$ with diam $(B_n) \to 0$ has nonempty intersection (in fact, $\bigcap_{n \in \mathbb{N}} B_n$ is a singleton).
 - (**Optional**) Show that the requirement in (a) that diam(B_n) → 0 cannot be dropped. Do this by constructing a complete metric space that has a decreasing sequence (B_n)_{n∈ℕ} of closed **balls** with ∩_{n∈ℕ} B_n = Ø.

HINT: Use \mathbb{N} as the underlying set for your metric space.

4. Prove that every Polish space X admits a linear ordering < that is both G_{δ} and F_{σ} as a subset of X^2 .

HINT:² Think of the points of X as binary sequences using a countable basis $(U_n)_{n \in \mathbb{N}}$.

¹Parts (b) and (c) of Problem 2 are the only questions in the entire course that mention ordinals.

²Thanks to Jenna Zomback for this.

- 5. Let $T \subseteq A^{<\mathbb{N}}$ be a tree and suppose it is finitely branching. Prove (directly) that [T] is sequentially compact.
- **6.** Let $T \subseteq \mathbb{N}^{<\mathbb{N}}$ be a tree. Define a total ordering < on *T* such that < is a well-ordering if and only if *T* doesn't have an infinite branch.
- **7.** Let *S*, *T* be trees on sets *A*, *B*, respectively. Let $D \subseteq [S]$ be a G_{δ} set and let $f : D \rightarrow [T]$ be a continuous function.
 - (a) Assuming that D = [S], prove that there is a monotone map $\varphi : S \to T$ such that $f = \varphi^*$.

HINT: For $s \in S$, define $\varphi(s)$ to be the longest $t \in T$ such that $|t| \leq |s|$ and $N_t \supseteq f(N_s)$, where $N_s := \{x \in [S] : x \supseteq s\}$ and $N_t := \{y \in [T] : y \supseteq t\}$.

(b) (**Optional**) Letting *D* be an arbitrary G_{δ} set, prove that there is a monotone map $\varphi: S \to T$ such that $D = \operatorname{dom}(\varphi^*)$ and $f = \varphi^*$.

HINT: Write $D = \bigoplus_n U_n$, where the U_n are open, and in the hint above replace |s| with the largest $n \leq |s|$ such that $N_s \cap D \subseteq U_n$. The case $N_s \cap D = \emptyset$ needs a special (yet straightforward) care.

8. Let X be a compact metric space and Y be a separable complete metric space. Let C(X, Y) be the space of continuous functions from X to Y equipped with the uniform metric, i.e. for $f, g \in C(X, Y)$,

$$d_u(f,g) = \sup_{x \in X} d_Y(f(x),g(x)).$$

Prove that C(X, Y) is a separable complete metric space, hence Polish.

HINT 1: Proving separability is tricky, so you may want to first prove it for X = [0, 1] and $Y = \mathbb{R}$. In the general case (to prove separability), note that by uniform continuity,

$$C(X,Y) = \bigcup_{n} A_{n,m},$$

for every $n \in \mathbb{N}$, where

$$A_{n,m} = \{ f \in C(X, Y) : \forall x, y \in X (d_X(x, y) < 1/n \Rightarrow d_Y (f(x), f(y)) < 1/m) \}$$

Realize that it is enough to show that for any $n, m \in \mathbb{N}$, there is a countable $B_{n,m} \subseteq A_{n,m}$ such that for any $f \in A_{n,m}$ there is $g \in B_{n,m}$ with $d_u(f,g) < 3/m$. Now fix n, m and try to construct $B_{n,m}$; when doing so, don't try to *define* each function in $B_{n,m}$ by hand as you would maybe do in the case X = [0, 1]; instead, carefully *pick* them out of functions in $A_{n,m}$.

HINT 2: This is Theorem 4.19 in Kechris's "Classical Descriptive Set Theory".

9. Show that Hausdorff metric on $\mathcal{K}(X)$ is compatible with the Vietoris topology.