Math 574: Set Theory

Homework 9

Due: Apr 19 and 20

Notation. For sets *A*, *B*, let $[A \rightarrow B]^{<\omega}$ denote the set of all finite partial functions from *A* to *B* (i.e. partial functions with finite domain). We make this set into a poset by taking as \leq the relation \supseteq (reverse inclusion).

Below, let *M* be a countable transitive model of ZF and let $(\mathbb{P}, \leq) \in M$ be a poset.

1. Recall that $X_{\mathbb{P}} \subseteq 2^{\mathbb{P}}$ denotes the Polish space of all \mathbb{P} -ultrafilters and the sets

 $U_p := \{ G \in X_{\mathbb{P}} : p \in G \}, \ p \in \mathbb{P},$

form a basis for the topology on $X_{\mathbb{P}}$. Let $Q \subseteq \mathbb{P}$ and let $\mathcal{U}_Q := \{U_p : p \in Q\}$. Characterize the following properties of Q in terms of \mathcal{U}_Q and the topology of $X_{\mathbb{P}}$. You may need the following:

Definition. A collection \mathcal{W} of open subsets of a topological space X is called a *weak basis* of X if for each nonempty open $U \subseteq X$ there is a nonempty $W \in \mathcal{W}$ with $W \subseteq U$.

- (a) Q is predense $\iff \dots$
- (b) Q is an antichain $\iff \dots$
- (c) Q is a maximal antichain $\iff \dots$
- (d) Assume in addition that for any $p, q \in \mathbb{P}$ with $p \not\leq q$, there is $r \leq p$ with $r \perp q$.

Q is dense $\iff \dots$

Remark: If you think this problem is too easy, you are right. I just want to establish a poset \leftrightarrow topology translation.

- **2.** Let $D \subseteq \mathbb{P}$, $D \in M$, be dense. Prove the following.
 - (a) Density is transitive: if $D' \subseteq D$ is dense in the poset (D, \leq) , then D' is dense in (\mathbb{P}, \leq) .
 - (b) If $G \subseteq \mathbb{P}$ is an *M*-generic \mathbb{P} -ultrafilter, then $G \cap D$ is an *M*-generic *D*-ultrafilter.
 - (c) Conversely, if $G \subseteq D$ is an *M*-generic *D*-ultrafilter, then the upward closure \overline{G} of *G* in \mathbb{P} is the unique (prove the uniqueness) *M*-generic \mathbb{P} -ultrafilter with $\overline{G} \cap D = G$.
- **3.** For sets $A, B \in M$, let $\mathbb{P} := [A \rightarrow B]^{<\omega}$ and recall (prove!) that $\mathbb{P} \in M$. Let $G \subseteq \mathbb{P}$ be an *M*-generic ultrafilter and put $g := \bigcup G$.
 - (a) Assuming that A is infinite, prove that g is a surjective (entire) function from A to B. HINT: For each $b \in B$, define a dense set $D_b \subseteq \mathbb{P}$ in M.
 - (b) Let $A := S \times \omega$, for some $S \in M$, and let B := 2. For each $s \in S$, put $g_s := g(s, \cdot) : \omega \to 2$, i.e. $g_s \in 2^{\omega}$. Thus, g can be viewed as a function $g' : S \to 2^{\omega}$ given by $s \mapsto g_s$. Prove that g' is injective.

4. (General Mostowski collapse) Let *R* be a binary relation on a set *X*. Say that *R* is *well-founded* if for every nonempty $Y \subseteq X$ there is $y \in Y$ with $R^y := \{x \in X : xRy\}$ is disjoint from *Y*. Prove that this is equivalent to the inexistence of a sequence $(x_n)_{n \in \omega}$ of elements of *X* with $x_{n+1}Rx_n$ for each $n \in \omega$.

A function π on X is called an *R*-collapse (or an *R*-contraction) if for every $y \in X$, $\pi(y) = {\pi(x) : x \in X \text{ with } xRy}$. Following the steps below, prove (in ZF – Pow) that every well-founded binary relation R admits a unique *R*-collapse.

- (i) Uniqueness: Suppose towards a contradiction that there are two distinct such functions and consider the set of points at which they differ.
- (ii) Towards existence: Say that $A \subseteq X$ is *downward R*-*closed* if for each $a \in A$, $R^a \subseteq A$. Let π be the union of all *R*-collapses defined on downward *R*-closed subsets of *X* and show that π itself is an *R*-contraction on a downward *R*-closed subset of *X*.
- (iii) Existence: Show that $dom(\pi) = X$.
- **5.** A set (think: family of sets) \mathcal{F} is called a Δ -*system* if there is a set r (called the *root*) such that for any distinct $a, b \in \mathcal{F}$, $a \cap b = r$. Prove:

 Δ -system Lemma. Every uncountable family \mathcal{F} of finite sets contains an uncountable Δ -system.

HINT: May assume without loss of generality (why?) that all sets in \mathcal{F} have the same size $n \in \omega$. Prove by induction on n.